US009485248B2

a2 United States Patent

Schmoyer et al.

US 9,485,248 B2
*Nov. 1, 2016

(10) Patent No.:
45) Date of Patent:

(54) ELEVATING TRUST IN USER IDENTITY (52) US. CL
DURING RESTFUL AUTHENTICATION AND CPC ... HO4L 63/0823 (2013.01); GO6F 21/335
AUTHORIZATION (2013.01); HO4L 63/08 (2013.01); HO4L
63/0807 (2013.01); HO4L 63/0853 (2013.01)
(71) Applicant: Jericho Systems Corporation, Dallas, (58) Field of Classification Search
X (US) CPC HO4L 9/32; HO4L 63/10; GOG6F 21/30
USPC 726/1, 7, 8; 713/150-151; 455/558
(72) Inventors: Timothy Schmoyer, Harvard, MA See application file for complete search history.
(US); Michael Dufel, Boulder, CO .
(US); David Staggs, Austin, TX (US); (56) References Cited
Vijayababu Subramanium, Columbia, US. PATENT DOCUMENTS
SC (US)
. . . 6,963,740 B1 11/2005 Guthery et al.
(73) Assignee: Jericho Systems Corporation, Dallas, 7389430 B2 6/2008 Baffes et al.
X (US) 7,392,546 B2 6/2008 Patrick
. . .o . (Continued)
(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35 FOREIGN PATENT DOCUMENTS
U.S.C. 154(b) by 0 days.
This patent is subject to a terminal dis- EP 1026867 A2 8/2000
claimer.
OTHER PUBLICATIONS
(21) Appl. No.: 14/506,825 In the U.S. Appl. No. 13/633,656, Notice of Allowability dated Jan.
. 24, 2014, 3 pages.
22) Filed: Oct. 6, 2014
(22) File D (Continued)
(65) Prior Publication Data
Primary Examiner — Dede Zecher
US 2015/0058960 Al Feb. 26, 2015 Assistant Examiner — Viral Lakhia
Related U.S. Application Data 67 ABSTRACT
(63) Continuation of application No. 13/844,622, filed on Credentlals sent over a back chapnel during the authentica-
tion of a user to a REST{ul service can elevate the trust the
Mar. 15, 2013, now Pat. No. 8,893,293. . . . S . .
recipient system can place in the user’s identity. The addi-
(60) Provisional application No. 61/691,248, filed on Aug. tion of an identity credential of higher strength can increase
20, 2012. confidence in user identities electronically presented with a
lower strength credential. Attributes from either credential
(51) Imt. CL can be used to determine authorization to a protected
GO6F 17/30 (2006.01) resource.
HO4L 29/06 (2006.01)
GO6F 21/33 (2013.01) 20 Claims, 14 Drawing Sheets

K& Meniy -

Relying Party
OpenlD ity RL | |+
Jericho OP

Assertin

QpanlD Provider

PRI & Identity
wilidaion

Gaogle OP
MyOpenlD OP
Yahoo OP

AUTHENTICATION

POP

US 9,485,248 B2
Page 2

(56) References Cited
U.S. PATENT DOCUMENTS

7,631,346 B2 12/2009 Hinton et al.

7,660,902 B2 2/2010 Graham et al.

7,886,346 B2 2/2011 Sandhu et al.

8,127,345 B2 2/2012 Gregg et al.

8,205,240 B2 6/2012 Ansari et al.

8,327,441 B2* 12/2012 Kumar GO6F 21/57

726/22

8,364,970 B2 1/2013 Fu

8,418,222 B2* 4/2013 Gbadegesin et al. 726/1

8,544,075 B2* 9/2013 Ranjan et al.ccoceeeene 726/9

8,572,706 B2 10/2013 Lucovsky et al.

8,621,561 B2 12/2013 Cross et al.

8,621,598 B2* 12/2013 Lai ..ccoooveivrenrnnene. HO4L 9/3213
719/328

8,682,752 B2* 3/2014 Bhatia G06Q 40/12

705/30

8,738,489 B2* 5/2014 Clark, Jr. G06Q 40/02
340/540

8,949,592 B2* 2/2015 Moroney et al. 713/151

8,990,699 B2* 3/2015 Pugh ...ccceovvnnenne. GO6F 21/41
715/738

9,357,384 B2* 5/2016 Ibrahim G06Q 30/00

2002/0147801 Al
2003/0074580 Al
2006/0053296 Al
2007/0006285 Al
2009/0235349 Al
2010/0205662 Al* 82010 Ibrahimet al. 726/7
2011/0213959 Al 9/2011 Bodi et al.

2011/0258679 Al1* 10/2011 Kaplinger et al. . 726/1
2012/0036552 Al* 2/2012 Dare et al. 726/1
2012/0151568 Al* 6/2012 Pieczul etal. ... 726/8

10/2002 Gullotta et al.
4/2003 Knouse et al.
3/2006 Busboom et al.
1/2007 Stafie et al.
9/2009 Lai et al.

2012/0159195 Al 6/2012 von Behren et al.
2012/0216244 Al* /2012 Kumar et al.c..coon..... 726/1
2012/0231844 Al* 9/2012 Coppingerc..c..... 455/558
2012/0233683 Al* 9/2012 Ibrahim G06Q 30/00
726/7
2013/0080769 Al* 3/2013 Chaetal.coceernnn. 713/155
2013/0086669 Al* 4/2013 Sondhi et al. . 726/8
2013/0125226 Al* 5/2013 Shah et al. 726/7
2014/0282989 Al* 9/2014 Youngetal. ..o 726/9

OTHER PUBLICATIONS

In the U.S. Appl. No. 13/633,656, Notice of References Cited dated
Jan. 24, 2014, 1 page.

In the U.S. Appl. No. 13/633,656, Notice of References Cited dated
Dec. 5, 2014, 1 page.

M Jensen, Technical Security Issues in Cloud Computing, Sep.
2009, vol. 9, pp. 109-116.

Backend Attribute Exchange (BAE) v2.0 Governance, Jan. 23,
2012, Retrieved from the Internet: URL:http://www.idmanagement.
gov/documents/backend-attribute-exchange-bae-governance.
Backend Attribute Exchange (BAE) v2.0 Overview, Jan. 23, 2012,
Retrieved from the Internet: URL: http://www.idmanagement.gov/
documents/backend-attribute-exchange-bae-overview.

Security Assertion Markup Language (SAML) 2.0—Metadata Pro-
file for Backend Attribute Exchange (BAE) v2.0, Jan. 23, 2012,
Retrieved from the Internet: URL: http://www.idmanagement.gov/
documents/saml-metadata-profile-bae.

Security Markup Language (SAML) 2.0 Identifier and Protocol—
Profiles for Backend Attribute Exchange (BAE) v2.0, Jan. 23, 2012,
Retrieved from the Internet: URL: http://www.idmanagement.gov/
documents/saml-identifier-and-protocol-profiles-bae.

Rome et al., “Certificate Use for Collaboratories”, Materias
Microcharacterization Collaboratory, Apr. 27, 1998.

Johnston et al., “Authorization and Attribute Certificates for Widely
Distributed Access Control”, IEEE, 1998.

Mudumbai et al., “Design and Implementation Issues for A Dis-
tributed Access Control System”, Ernest Orlando Lawrence Berke-
ley National Laboratory, University of California.

IBM, “Resource Access Decision (RAD)”, OMG TC Document
corbamed/99-04-xx, Apr. 26, 1999.

Thompson et al., “Certificate-Based Access Control for Widely
Distributed Resources”, The USENIX Association, Aug. 23-26,
1999, Proceedings of the 8th USENIX Security Symposium, Wash-
ington D.C, USA.

Espinal et al., “Design and Implementation of Resource Access
Decision Server”, Florida International University, School of Com-
puter Science, Jan. 21, 2000, Florida, USA.

Vollbrecht et al., “RFC 2904 AAA Authorization Framework”, The
Internet Society, Aug. 2000.

Parducci et al., “XACML Language Proposal”, OASIS, Nov. 27,
2001.

Anderson et al., “XACML Language Proposal V.0.8”, OASIS, Jan.
10, 2002.

Chadwick, David, “The PERMIS X.509 Based Privilege Manage-
ment Infrastructure”, Internet Draft AAAarch RG Intended Cat-
egory Informational, Apr. 11, 2002.

IBM, “TBM Tivoli Access Manager, WebSEAL Administrators
Guide Version 3.9”, IBM Corporation, Fifth Edition, Apr. 2002.
Chadwick et al., “The PERMIS X.509 Role Based Privilege Man-
agement Infrastructure”, SACMATO02, Jun. 3-4, 2002, Monterey,
California, USA.

Flinn, Don, “XACML Annes Notes on the F2F”, Jul. 30, 2002.
Ashley et al., “Implementing Dynamic Rules in an Access Manager
Environment”, IBM, Jul. 2002.

IBM, “IBM Tivoli Access Manager for e-business V4.1 Facilitates
the Integration of Your e-business Applications”, IBM, Oct. 22,
2002.

Farrell et al., “Assertions and Protocol for the OASIS Security
Assertion Markup Language (SAML)”, OASIS Standard, Nov. 5,
2002.

Anderson et al., “OASIS eXtensible Access Control Markup Lan-
guage (XACML), Committee Specification 1.0”, OASIS, Nov. 7,
2002.

Chadwick et al., “The PERMIS X.509 Role Based Privilege Man-
agement Infrastructure”, Future Generation Computer Systems,
Dec. 2002.

Chadwick et al., “RBAC Policies in XML for X.509 Based Privilege
Management”, International Federation for Information Processing,
2002.

IBM, “IBM Tivoli Access Manager, Base Administrator’s Guide,
Version 4.1, Third Edition, Aug. 2003.

IBM, “IBM Tivoli Access Manager, Authorization C API Devel-
oper’s Reference, Version 4.17, Fifth Edition, Aug. 2003.

Lorch et al., “First Experiences Using XACML for Access Control
in Distributed Systems”, Sun Microsystems Inc and Association for
Computing Machinery 2003, ACM Workshop on XML Security,
Oct. 31, 2003, Fairfax, VA, USA.

Thompson et al., “Certificate-Based Authorization Policy in a PKI
Environment”, ACM Transactions on Information and System
Security, vol. 6, No. 4, Nov. 2003.

Barkley et al., “Supporting Relationships in Access Control Using
Role Based Access Control”, Jul. 29, 1999.

OMG, “Resource Access Decision Facility Specification”, OMG,
Apr. 2001.

Civil Action No. 3:14-¢v-02281-K U.S.D.C., Northern District
Texas, Jericho Systems Corp. v. Axiomatics, Inc., (U.S. Pat. No.
8,560,836), https://ecf.txnd.uscourts.gov/cgi-bin/ShowIndex.pl.

* cited by examiner

US 9,485,248 B2

Sheet 1 of 14

Nov. 1, 2016

U.S. Patent

ool

v:/

310}S
ajnquUuy

Aung Buikjay

" s sy

(dad)
juiog
uoisnag Aijoq 18pIA014 ([uad() |qummmmp
\N: \vo—
(d3d) o4 194y
uoyozuoyny uolpyyusyiny

zol
7

Jualy saspy

US 9,485,248 B2

Sheet 2 of 14

Nov. 1, 2016

U.S. Patent

z by 00T

viT b 3poN

NOLLVZIYOHLAY NOILY)ILNIHLNY

r 9z SN . :
o P . {1apuodsoy enquy THYS) penr oo
£ .o : WS SR 4. . B
. dad Lo s X N
o Lo _ FAKA : 40 00yo} .
N P ST R | doawedoiw | |% .
: *ox EOpoN olz . 40 #|fioog -
st o e [woopwr | [
. woympyoa o lowesy ..

ro Hyuep| 3 [yd ' «| | 74N Amuap) gluadg .

v | sepuoyg guedp e . ..

o P "l Auing Burkjey -

oou\n................. R N L

44N 912, ¥0Z, g0z

(d3d) soH14 33yl
IAISG |nj]STY uoynziioyiny i - uolmUSYINY

[oA3[iDaIy) /sa2an0sa1/palfisnyadIAIaGIsayoLa] /0808:Z0spseags//-duy

L 3poN

U.S. Patent Nov. 1, 2016

Sheet 3 of 14 US 9,485,248 B2
. hitp://shiresds02:8443/DemoRestServiceCosified /resource/threatlevel
/
302 304
User
No 306
320 310
Get OpenlD Identity Do You Have C No Does Ticket
llkk::v:!dseerlmi Bg:rnlD OpenlD Idenfifer? - Exist?
308
L3 c -
Normalization Regisrafion Page 26 gJ
340
324
[¥ s
Discovery i Oide M (ASR(e)‘Ii’"fz?ARuel l;slzt?ﬁon
Registration Link

332 | 342

CAS RP Login Page with
Authentication Failure Message
and Ask for Registration

Y 330 [a4
S -
Xists?
Yes 334
Ao naato i
Feich
328 1336 Attributes

/
CAS RP Login Page with No Yes \33 8
Authentication Failure Message

CAS RP Gets ST,
Validuates it Against CAS OP

366J

CAS RP Verifies the CAS OP
Response and Issues T6T and
ST for RESTRul Service

300

US 9,485,248 B2

Sheet 4 of 14

Nov. 1, 2016

U.S. Patent

897 :
8jonjoay _ Q?__Es.: ||||||| ._. —-—————- uu_mewvama_wam.sm*mz@mw_ - _| |||||| >
00\“ asuodsay 0 Nﬂ _ _ _ 153Y 04 pog Uoyassy
||||| | S¥) spueg pup jepi
1sanbay ualyozuoyjny «-- IOIOW/W |“ -=- IEIEW&W.@:% s o _ 24 SEIDpOA ¥ V)
|27 AN |
I Ce. 1 | epompmy 8<y
| A T R i
_ LA | ovr S e
144
_ _ vy~ " -~~~ " o
wassy [I .
_ | i soan 0141955y TS 199 _ 1444
_ _ ~ £ [A44
8ey ey | ssﬂ_yq |
“ “ Y Qlwedg vzy “
_ _ ’ _ Jsanbay yy quadg
| | | ZTY ™ wmp sinquuy
1A 4
_ _ _ ON.V.—(uolonOssy
| | | 8l .V_If Aranorsig
_ _ _ L7~ wopsmypusoy
_ _ poipoy “ \O A4 vl .v/_a__m:_%_ Quadg 199
_ . o — —p Zov
[oAsjiDa.yy /a3un0sa1 /paiyisnyedialegisayowaq,/0g0g-zospsengs//duy g ~
| yov | gor | sy | ez |80V Zl¥
o | gl
dad n}1S34 13piao1g gjuad Ang Buidpa Jualy Jas
I ANGUHY TWYS pioig quedg d DUIARY v 48s)) fﬂov

y by

00

18]

US 9,485,248 B2

Sheet 5 of 14

Nov. 1, 2016

U.S. Patent

00$

AIAIS |NISTY
8| 0} S5820y SaAI9 pup

Awiag, sidany d3d

=
1489

oLs

PamO|[y 10N S Sseny
-Jasq) ayy of ypng Jsanbay ayj
spaunpay pun ,Auaq, sidany J1q
\

1

4

(dad) $as3 ot isanbay TWIVXpUROGTWYS Spuss pun saipjnuioq uay)
UOILIaSSPINGUIY TWYS S8ABLIIQY ‘UolLIassy SY) Spoay d3d

=
80§

I

Aying Buik[ay wouj uoiassy Sy) saniarsy puo
1sanbay Jasq) sidedsatul (d14) 41 uonnzUOYINY

~
920§

|

uolimyuayiny |njssainng

p
yos

|

a)IAIag
, _Lm | 505

US 9,485,248 B2

Sheet 6 of 14

Nov. 1, 2016

U.S. Patent

I 1 e

“NId oA s33ua BsesId

USIPARDY

Anuapany

[x Tz} uiborT auRIDARY |
0 3USIDARDY AAUSPIARDY iufoL
“UBH0} A Jo 30K} BU5} UD SPUSSD POLIL UORRDRUSUINY “USHOY U O3 SILALSUNY 35e9ld
1 UOREINUBYINY UOL PIIFA0IY

819 q9 by

019
ar usdo X

a1 uado Aw
Tov

ocoyes

23|6oon
SWaysAS oydLa[
P3RS

urre[o 10§ seynquye pue qruedQ mok g

A"

*s33Is J2Y30 ojul sw buibbo| @J0jaq Bw uiepm @

_mco_un0© palinbay © 1aquinu aakojdwz
_mco_uno© paJlinbay @ :aweu appIW
_mco_uno© paJinbay @ :stenur
_m:o_uao© pasinbay ® ‘aWeu UsAD 0_.
_mco_ua.u@ paJinbay © HICOTE]
_mco_un_0© paJinbay @ NS

_mco_ua0© paJinbay © N

0ZZ6€T002°4V " IHIV NNVIW/SIasn/se2/0808:01'022°89T1 26T//:d1y _ :(T4n) 43yRUSPL grusdo

1455

m SW2ISAS OYIL[:1apiacsd qIuado PojRS

wireo Joj sejnquye pue (qrued(ok g

Ked Sulk[oy

29 by 1o

woo/

|9AB183.Y3/532.4N0S5./PaLISRDBDIAIBSISIUOWSA/E b+ Z0SPSJIqs//isdy A&

= _ cer o O T

v9 by 009

US 9,485,248 B2

Sheet 7 of 14

Nov. 1, 2016

U.S. Patent

L by

did

Ty
“uayjny

vl TSMIST

e
0cL
uoipiassy jof uibio) /so)/
PuD S 1534 o) 18xpi) {mod:sons0s
Vs aJopi[op pup (1] 189 drsm)//:sduy
~ dYl S¥) 04 balipay
8lL
uolassy
W, TS ~ ,
9LL =n o<
uoassy 106 pun 4y sy 1o
13piA0lg PEE oy oopyon oo opiy g
altedg . g Buihjey
~ (Ind) pwado /5o /{1ansas do-soa)//:sduy N
rAV4 uoloyuaYnD oLz
— Qluadg 1o} 40 Sv) 0} paxpay
uibo) /s0)/
|4V uolsassy 196 {nod:ianias
pup SM 1STY 04 pIL Arsm)//:sdpy
SIDpI|OA puD JODI] 199 43 §¥) o) pasipay
uoiBssy] -

TWYS 8L gy

T

0€L ad .__2_“2

\ 1-SM 1534
002 90£

13iDaMm /532n053
/poiisnyanIagisayowag
/{uod:1ansas-awos)//-duy

(AN

(14n)
185MOIG GO

[AVV4

[oAsj4naIy)/sa2n0s0
/pelyispyaaiaiagisayouaq
\?s_umzwﬁsav\\a:_._

ou

LaviS

US 9,485,248 B2

_ _ mkwﬂs_zom paisanbay woy} asuodsay

9£8
_ f |||||||||||||||| B »

{Auaq/uuiag) _ wowﬂ__o_:aé ANGUIY TWYS YUM U0ILISSSY SY)

asuodsoy *—————- |_ ||||||||| |_ |||||||||
— . |||||| > FRLPPR998 | g

Sheet 8 of 14

Nov. 1, 2016

_ _mg_sg__ﬁ_s—__é _ 798-49pIL _ 798 wwm/
0/8 A_25___.2___\az.._32\1u_*_mSSE»mEM_E»n 1/Ebr8:z0spsengs//-duy) _==m= wol} 8)1A185 sisanhdy §=
1514 2 ypog uoysassy > B UGS SY)_ o,
N2 m___am pue oyl
yég o s__,_.___s AN g
|44 -
- I=_.I_Elumy
9€ [DTETTTee
uolassy _z<m IIIIII hd

asuodsey

me__;

uolpessy
.E&M@Sc 0ILIaSSY TWYS 199 8¢c8

_
vés | o¢s _
8T8 | sanquuy piey |

_
_

(=]

Ve 008

\L_o_-s_:_a____.& Qluadg

928 " by

A

_ O_.@J._Sa

_ V184 e

uolnzijpiuIoN|

20

Ijiuap gjuadg 129 peupay
~

THN Blisqapm

oow Nmm
~ |

IS (vs)

1apuodsay
5053 [P4153Y c___n___.___e. TS ispiaolg qpuadg || Aung Buidjsy ajisqap, paindag /Wow

U.S. Patent

US 9,485,248 B2

Sheet 9 of 14

Nov. 1, 2016

U.S. Patent

= 6 *bu
16 -
2 uoljiassy uonpiassy
THYS e TWVS
B :&m- s =Nl
; $10[30UU0) Iapuodsay 0} laju|
i anog njog TWYS < dLH - Jual)
B g g g .
806 906 ¥06 206
~
oL6

US 9,485,248 B2

Sheet 10 of 14

Nov. 1, 2016

U.S. Patent

[}] .
000l | oL by _ _
| l |
| | | |
“ “ “. - |Ea__u|>n_ Ea_ﬂu mamﬂ_._ﬁﬂ .V“
_ b oo »l 9201 _
_ _ asuodsal Tyys paubiis spiomiog _ _
~
_ | 7201 _ _
| votpassn pun aBossaw asuodsal Tys subis D | |
| \\ UopIassy spjing | |
¢ol
| | | |
L - - — — — -
(iy paisenbey yim esuodsay .v" “ "
| Sozol | |
(b sainquuy pajsanbey oy Ateng) e_ﬁvsm 1 | |
_ glot | _ _
(I @105 0jop 0} uoljouuD) dn 5j5 1 | |
_ 161 _ _ _
I pay) Aunag I | |
| % afinssayy jsenbay Twys o uonopijo | |
_ Bunypay) Ty) 3 vouopijoA [d _ _
v 1snbas spiomioy
(zloL I = 1 |
_ _ 8001 L Isanbay Asang 3inqUUY TWYS '
L) \ L]
| | | 7001 |
1 ! 1
3210 Dj0(Japuodsay 0 Jaju
WS dLIH el
<> = = e
9101l olLol 9001 cool

US 9,485,248 B2

Sheet 11 of 14

Nov. 1, 2016

U.S. Patent

00LlL

821105 D

(' i1 .a_m | L __ »l
| | | | wep Aq pownsuo) s| W@%e ws |
_ _ UoIIassy pun —| ™ asuotsal #_ﬁl_z_ﬂm %I:.;ﬂm .V_ ?€LL _
| | abipssew asuodsal sub | \\ | |
THYS subls
| ~ 30059y - - Iauﬂc _=I= ﬂ%ﬂ%mgv | | |
| Hmo HKddy youyy sajny Aijog | \m | | |
I o} Buipiony sajnquuy siayy ocll I I I
_3_2___5 paisanbay yim Asang o} m_u__o%s_w_ _ _ _
“ sz~ ! “ !
_; _WN_E__E §1 Aton ning spinmioy | | | |
I zzll — | I | |
| jsumBy A1ng) nijng Spay) | | |
l<]
_ \\ . ;ss Y paisenboy 1oy Asenpy pjpg spuo . _ _
[ocll | SHnuuvp } P8) | |
[I Bl _ _ _
| | © pug EUU__,_:._E_u_éa_zawzu@ﬁ | | |
I I PILLT) I I
| | u_u»___.u Mumag g obiossoy | |
{sanb3y TWYS jo uoliopljop
“ “ Bunpey) 14) '3 uouopyop [¥d _ \m\o L “ “
I I zl ﬁ_.\ < 1snbo1 spiomIDy I W\O Ll I
| | | l. isanbay A1ang ainquuy TWYS |
! veil ! 9LLL ! oLLl 3 9011 ! olLL
| |
O 2 D | 2
‘_o_Eo%S_ ADJBIU|
H|NDA TWYS dUH juaip)

US 9,485,248 B2

Sheet 12 of 14

Nov. 1, 2016

U.S. Patent

92021 80¢l
(4} oam& /Ea._ Buidjay %
Y101A0¥d Qlusdp

N\ /

\wou—

rezk " mm_ _ _
saaaaq yndjng |— | A4S ./. QlZL
' ' rALAL ._ J

TR
soeq indu] |, pal o/ A0S |N)[STY

7
(444}

002l

US 9,485,248 B2

Sheet 13 of 14

Nov. 1, 2016

U.S. Patent

\ AT oy) el i
8ZC1 T _&Wm
79100
[0 ﬂm_,.___:_m.o _Wﬁ |oﬂm__s_§___% _m
| 9GE1 Aowey VVEL howsy
(uoyoaijddy Japisosg] ()
1o} I uonny|ddy
___ ¥Sel Quedp | Nvm Aung 9___.»_3_)
— ZgeLiossany OF €l Joss020) —————\\
Z9€1 98¢ AMowsy

V8El

ﬂk/ 29¢l sEm\ f 0S€el stamk / BEE1 Jonag \

QECI seanuag uoymIusyiny

N

S

uoyoal|ddy
dad

v_xmvw‘m_mz ZBE 10ssa014
% _ OBEL Jonses)
[gosl “ //
Kloway
(ooe1T) 0€€l veel did
_sm_v_wum_”.__% I8}]14 uoymusyiny ZEcL o)1 tounzioyiny
Focl o7¢1 gzer vouoddy
= =
\——/ FZel Jossarnyg
/ 20og1 el \ / ZZE1 Jansg \
0ZE1 DM |n
00€L / 0zt S InSTY \

US 9,485,248 B2

Sheet 14 of 14

Nov. 1, 2016

U.S. Patent

p1 By

€ [oAd]
Apisueg

S|bijuapay) [auupy)
yong pun juoyy

7 [on0]
Apisueg

L o0
Apisueg

oLy

A|ug [pyuapar)
[ouupy) juoi

oorl

US 9,485,248 B2

1
ELEVATING TRUST IN USER IDENTITY
DURING RESTFUL AUTHENTICATION AND
AUTHORIZATION

PRIORITY

This application is a continuation of U.S. patent applica-
tion Ser. No. 13/844,622, filed Mar. 15, 2013, entitled
“Elevating Trust in User Identity During RESTful Authen-
tication.” This application claims priority to and incorpo-
rates by reference U.S. provisional application 61/691,248,
filed Aug. 20, 2012, entitled “Methods and Apparatuses for
Authentication and Authorization.”

FIELD OF THE INVENTION

The specification relates the authentication of entities
(which can be persons or non persons) to RESTful services.

BACKGROUND OF THE INVENTION

Authentication comprises the verification of the identity
of a user, process, or device, often as a prerequisite to
allowing access to resources in an information system. (see:
NIST IR 7298 Revision 1, Glossary of Key Information
Security Terms.) Authorization comprises access privileges
granted to a user, program, or process or the act of granting
those privileges.

Representational State Transfer (REST) is a communica-
tions style that allows a client machine, for example a
computer running a Web browser, to communicate to a
server, for example a computer running a service. Client-
server communication is “stateless” between requests,
meaning each REST interaction typically contains the infor-
mation for a component to understand the message. REST is
considered a “lightweight” protocol suitable for distributed
hypermedia systems. In the REST style, a data object is
uniquely named using a Uniform Resource Identifier (URI).
The REST style uses operations such as GET, PUT, POST,
HEAD, and DELETE. The REST style is loosely coupled,
does not require a message header, human readable, and
stateless between requests. Other characteristics of REST
are described in chapter 5 of the doctoral dissertation of Roy
Fielding “Architectural Styles and the Design of Network-
based Software Architectures,” University of California,
Irvine. REST was initially described for use with Hypertext
Transfer Protocol (HTTP) but is not limited to that protocol.
Because REST works well for distributed, collaborative,
hypermedia information systems, it has become a popular
approach for supporting the World Wide Web (WWW).

REST Web services are resources accessed by users
through, for example, a Web browser. RESTful Web services
allow simpler application development and are ideal for
interaction with Web browsers via JavaScript or AJAX.
REST has become the predominant Web service design,
favored by mainstream Web service providers such as Face-
book, Google, and Yahoo. Information passed in a REST
request is described as “front-channel” exchange.

Security Assertion Markup Language (SAML) is an
XML-based standard ratified by the Organization for the
Advancement of Structured Information Standards (OASIS)
that defines the syntax and semantics of SAML assertions
and tokens as well as protocols used to request and transmit
those assertions between systems. SAML assertions can be
used for exchanging authentication and authorization data
from a trusted provider to a relying party. A SAML assertion
comprises a package of information that supplies zero or

10

15

20

25

30

35

40

45

50

55

60

65

2

more statements made by a SAML authority. (see: OASIS
Security Assertion Markup Language (SAML) v2.0 (March
2005)) The integrity of assertions can be protected by
cryptographic techniques, such as encryption of the asser-
tion, encryption of a part of a SOAP message, use of SOAP
message security, use of a SAML token, or other enveloping
technique. SAML profiles describe how SAML tokens or
SAML assertions can be passed by value or by reference.

SOAP, originally named for the term Simple Object
Access Protocol and ratified by the World Wide Web Con-
sortium (W3C), is a protocol for exchanging structured
information. SOAP is frequently used as the messaging
framework in the implementation of Web Services in com-
puter networks. SOAP messages are XML encoded and are
considered “heavyweight” comprising an envelope with a
header and body therein.

OpenID® (OpenlD Foundation Corp., Portland, Oreg.) is
an authentication profile that provides a standardized way of
authenticating a user, for example of a web browser, using
credentials provided by an OpenlD provider. Websites must
be specifically configured to accept OpenlD credentials, for
example by using an authentication filter that recognizes the
authentication protocol. Central Authentication Service
(CAS) can be used to implement authentication protocols.
Users register at an OpenlD provider and are provided with
an identifier, typically a Uniform Resource Locator (URL).
During authentication, for example to a web site, the user
provides the OpenlD identifier to the relying party. The
relying party redirects the browser to the OpenlD provider,
which authenticates the user and confirms the identity of the
user for the relying party.

BRIEF SUMMARY OF THE INVENTION

The invention described herein comprises the exchange of
attributes that may be used during the authentication and/or
authorization of an entity to a RESTful web service. Attri-
butes used in authentication to the RESTful service are not
all passed in the request to the RESTful service, i.e.,
“front-channel” exchanges. Described herein is a method-
ology of using a secure “back channel” assertion exchange
that can use, for example, a SAML token or a SAML
assertion.

DESCRIPTION OF THE DRAWINGS

FIG. 1 shows an example high-level overview of some
major components.

FIG. 2 shows an example high-level architectural view of
the authentication and authorization functions done prior to
accessing the RESTful service.

FIG. 3 shows an example detailed description of authen-
tication of the user making a request for a RESTful service.

FIG. 4 shows a diagram illustrating an example of the
actions performed during authentication and authorization.

FIG. 5 shows a detailed description of an example autho-
rization to a RESTful service.

FIGS. 6 A-6D show a representation of example Graphical
User Interfaces (GUIs) which may be used. Specifically,
FIG. 6A shows use of a browser to access a REST service,
FIG. 6B shows use of a GUI to select an OpenlD provider,
FIG. 6C shows use of a GUI to specity specific attributes for
retrieval, and FIG. 6D shows use of a GUI during smartcard
authentication.

FIG. 7 shows an example of “single sign-on.”

US 9,485,248 B2

3

FIG. 8 shows an example diagram illustrating the actions
performed in support of a “single sign-on” during authen-
tication and authorization.

FIG. 9 shows an example high-level overview of the
SAML Attribute Responder.

FIG. 10 is a diagram illustrating example exchanges with
the SAML Attribute Responder.

FIG. 11 is a diagram illustrating example exchanges with
the SAML Attribute Responder including the vault compo-
nent.

FIG. 12 shows an example representation of computer
hardware described in the specification.

FIG. 13 shows an example of components in an imple-
mentation of the authentication/authorization system.

FIG. 14 shows an example of increased access to varied
classifications of sensitive information based on the strength
of credentials used during authentication.

DETAILED DESCRIPTION

The invention comprises secure authentication and/or
authorization of users communicating over REST, for
example, using a web browser. An example supports the
secure authentication and authorization of requests made to
a RESTHul service from a user through an agent, for example
a browser. A RESTHul service can be configured to augment
the user request for a service made using a REST architec-
tural style and provide secure authentication and, optionally,
authorization capabilities.

In general, “front channel” refers to passing the SAML
assertion or token along with the message requesting a
service. In general, “back channel” comprises a direct com-
munication between two system entities without “redirect-
ing” messages through another system entity, for example an
HTTP client (e.g. user agent). In general, a back channel
exchange passes at least some of the information, which may
be attributes, separately from the message requesting a
service. Attributes define, classify, or annotate the datum to
which they are assigned. For example, a user of a RESTful
service could hold an attribute “clearance” assigned to the
value “top secret.” An example implementation uses Ope-
nlD Authentication 2.0 protocol and CAS. CAS is available
from Jasig, an incorporated, non-profit, 501(c)3 organiza-
tion. In this document, “RESTful” refers to a communica-
tions style comprising one or more REST characteristics
described above. For example a communications style com-
prising data objects that are uniquely named using a Uni-
form Resource Identifier (URI) and are exchanged in
human-readable form. Another example being a communi-
cations style that is loosely coupled, does not require a
message header, human readable, and stateless between
requests. Another example being a communications style
that comprises uses operations such as GET, PUT, POST,
HEAD, and DELETE and is sent in a human readable
message format.

A RESTful service can be configured to optionally invoke
an authentication filter that intercepts the request, as shown
the example in FIG. 1. There are many ways to accomplish
this step but the result is the redirection of requester agent,
for example a client or a browser 102, by authentication
filter 104 at the RESTful service. HTTP redirection from
authentication filter 104 allows the user’s browser, or similar
mechanism, to interact directly with component 106 oper-
able to receive the user’s selection of their identity provider.
Component 106 could, for example, be implemented using
CAS.

10

15

20

25

30

35

40

45

50

55

60

65

4

FIG. 1 is an example of the sequence of the high level
components. It should be understood that redirection causes
the user agent, for example a browser using the HTTP
protocol, to interact directly with components in FIG. 1.
Redirection permits acceptance of user input, for example
the selection of a identity provider, or the presentation
authentication credentials.

After receiving the choice of OpenlID Provider, Relying
Party 106 redirects the user agent 102 to the selected
OpenlD Provider 108. Component 108 could, for example,
be implemented using CAS. This second redirection permits
acceptance of user input, for example user input used to
authenticate the user to the OpenlD Provider component 108
and retrieval of attributes related to the authentication pro-
cess. Attributes may be retrieved from an attribute store 110.

The successful authentication of the user to the OpenlD
Provider component 108 and retrieval of attributes affects
the decision made by the authentication filter 104 to permit
or deny access to the RESTful service 116.

A RESTful service can be further configured to optionally
invoke an authorization filter 112 that intercepts the authen-
ticated request, as shown in the example in FIG. 1. There are
many ways to accomplish the authorization step but the step
can be referred to as an enforcement point. An enforcement
point, which can be a Policy Enforcement Point (PEP), may
further rely on a Policy Decision Point (PDP) 114. A
decision that the authenticated user is authorized by the PDP
infrastructure will permit the user to access the RESTful
service 116.

FIG. 2 is an example of a request to RESTful service 202
using, for example, the HTTP or HTTPS protocol. Autho-
rization filter 204 triggers redirection of the request to a
collection of components 206 which may, or may not, be on
the same computer system, server, or node. Redirection to
Relying Party 208 permits acceptance of user input, for
example the selection of the user’s OpenlD provider from a
list of available OpenlD providers.

Relying Party 208, can be implemented to support the
OpenlD profile using CAS but custom code or other imple-
mentations or profiles are acceptable if they provide a
back-channel process for validation of authentication
tokens, as described below. The user selects an OpenlD
Provider 210 or equivalent authorization provider. An
example of an OpenlD Provider 210, using the OpenlD
architectural style, is shown in FIG. 2. Other architectural
styles and implementations are possible. The selected autho-
rization provider accepts input that can be used to validate
that the user is who he or she claims to be. Authenticating
entities can also be non-human, for example software appli-
cations such as Internet robots or spiders.

Proof of user identity can be based, for example, on
knowledge of a password, passphrase, one-time password,
cryptographic device, or shared secret. Other examples
include stronger credentials such as tokens, smart cards, or
devices that provide greater assurance of an identity, for
example through possession of a device (tablet, personal
digital assistant, cell phone, net book, smartphone, laptop, or
other mobile device).

Devices can be augmented to provide strong authentica-
tion or multifactor authentication, such as the addition of a
smart card or fingerprint reader to mobile devices. Examples
include cases that add card readers and or fingerprint readers
to cell phones (RIM BlackBerry Smart Card Reader PRD-
09695-001), tablets (S.I.C. Biometrics iFMID 500xs), and
laptops (Dell Latitude D430 laptop with Integrated Smart
Card Reader and UPEK finger print reader). Alternately,
smart card readers and fingerprint readers can be external to

US 9,485,248 B2

5

a device, such as attached through use of a USB port, such
as S.I.C. Biometrics iFMID 300/370, Stanley Global Model
SGT111. Smart card reader and fingerprint reader function-
ality can be added through other means, such as Bluetooth,
examples include baiMobile 3000 MP or TopLink Pacific
SmartBlue.

Greater trust can be placed in credentials that have been
cryptographically signed by a trusted entity. Such signatures
may use a manifest created from a hash of the contents of a
credential which is then encrypted using an asymmetric key
thus demonstrating possession of a key held by the trusted
entity asserting the identity of the bearer. Other mechanisms
of proof are possible, such as the demonstration that the
signer is in possession of a shared secret.

TABLE 1

10

6

Assertion Markup Language (SAML) to bind the data
returned with information asserting both the sender’s iden-
tity and the integrity of the returned message. One example
of such a component could be a SAML attribute responder
(SAR) 212. Other implementations are possible, for example
use of a secure channel to a relational database, object
database, XML database, or LDAP. RESTful service 222
and associated filters 204, 216, Relying Party 208, OpenlD
provider 210, SAR 212, and LDAP 214 may, or may not, be
on the same computer system, server, or node. One example
deployment is shown in FIG. 2 through the use of dashed
lines and numbers denoting separate nodes 1-5, but other
deployments are possible. The result of user authentication
to the OpenID Provider component 210, along with any

Authentication using User Smart Card

2012-03-16 13:40:59,823 DEBUG

[org.jasig.cas.adaptors.x509.web.flow.X509CertificateCredentialsNonInteractive Action|]

(http-8443-1) Certificate found in request.
2012-03-16 13:40:59,845 DEBUG

[org.jasig.cas.adaptors.x509.authentication.handler.support. X509 CredentialsAuthentication
Handler](http-8443-1) Evaluating CN = MANN.AIRE.AF.2001392207, OU = USAF, OU = PKI,

OU = DoD, O = U.S. Government, C = US, SerialNumber = 251826
2012-03-16 13:40:59,846 DEBUG

[org.jasig.cas.adaptors.x509.authentication.handler.support. X509 CredentialsAuthentication

Handler](http-8443-1) Found valid client certificate
2012-03-16 13:40:59,846 INFO

[org.jasig.cas.adaptors.x509.authentication.handler.support. X509 CredentialsAuthentication
Handler](http-8443-1) Successfully authenticated CN = MANN.AIRE.AF.2001392207,

OU = USAF, OU = PKI, OU = DoD, O = U.S. Government, C = US, SerialNumber = 251826
2012-03-16 13:40:59,846 INFO [org.jasig.cas.authentication. AuthenticationManagerImpl]

(http-8443-1) AuthenticationHandler:

org.jasig.cas.adaptors.x509.authentication.handler.support. X509Credentials AuthenticationH
andler successfully authenticated the user which provided the following credentials:
CN = MANN.AIRE.AF.2001392207, OU = USAF, OU = PKI, OU = DoD, O = U.S. Government, C =

Us,
SerialNumber = 251826

FIG. 2 is an example of the use of a public key infra-
structure (PKI) credential, which is retrieved, for example,
through interaction with the user made possible by redirec-
tion of the user’s browser to OpenlD Provider 210. One
possible implementation is the use of a card reader acces-
sible from the user that is operable to pass data from a card
reader in a response to a request for credentials. Credentials
from the smart card reader can be validated, for example
using PKI validation and CRL checking. Additional methods
for validating certificates could be used, such as the Online
Certificate Status Protocol (OCSP). An example of authen-
tication using a smart card credential is shown in Table 1.

Examples of smart cards that can encode digital certifi-
cates used for authentication include the U.S. Department of
Defense (DoD) Common Access Card (CAC) or Personal
Identity Verification (PIV) card. Examples of card readers
include contact card readers and contactless card readers.
Other authentication mechanisms are possible, such as voice
recognition, fingerprint recognition, palm recognition, or
other biometric mechanisms. Additional mechanisms may
be incorporated, such as use of knowledge-based authenti-
cation, digital fingerprints, learning algorithms, anomaly
detection, and behavior analysis.

Receipt of authentication information, which may be
two-factor authentication information, enables OpenlD Pro-
vider 210 to search and collect additional attributes known
about the authenticating entity. Additional attributes may be
stored in any data store, including LDAP 214 or equivalent,
for example a database management system (DBMS).
Retrieval of additional attributes may use the Security

40

45

60

collected additional attributes, is provided to the authenti-
cation filter 204 associated with the RESTful service.
Authentication associated information may be passed
between components using the user’s browser, for example
using a cookie associated with the user’s browser, or added
to or associated with a redirection URL. The identity pro-
vider credential, for example the OpenlD credential, can
also be passed in the redirection of the browser to the
RESTful service. Redirection of the user’s agent back to the
authentication filter 204 associated with the RESTful service
allows the retrieval of the authentication associated infor-
mation from a secure cookie, appended information in the
URL string, or other mechanisms. For example, in addition
to, or in place of, one or more cookies, authentication
information can be associated with the user or user agent
using plugins, proxy cache information, or one or more local
shared objects (LLSOs).

Authentication of the user may be followed with autho-
rization filter 216. Authorization filter 216 can comprise a
PEP that communicates to a networked authorization infra-
structure 218 that includes a PDP 220. An alternative
example would combine the PDP with the PEP. The autho-
rization infrastructure is useful to determine if the authen-
ticated requester should be allowed access based on the
identity of the requester or attributes known about the
requester. Attributes passed in RESTful request 202 may be
used in authorization, for example IP address, geographic
location information, or agent-specific information. Agent-
specific information available can include agent or browser
type, agent or browser version, language, and encoding,

US 9,485,248 B2

7

among others, passed in the request, which could be an
HTTP request. Attributes describing the user collected dur-
ing authentication as well as attributes passed with the
request and known at the RESTful service can be used
during authorization.

Attributes available from the authentication infrastructure
206 can be made available during exchange of information
between components of the RESTful service 222 (such as
authentication filter 204 and authorization filter 216) and
Relying Party 208 or associated authentication infrastructure
206. This exchange of information can be done, for example,
during validation of the authentication information, such as
validation of service tickets or similar tokens. This “back-
channel” exchange of data is a different communication
exchange from the request to the RESTful service, i.e. the
front-channel exchange 202. Additional attributes, such as
attributes concerning the environment, type of request,
requested object, or information known by the RESTful
service may also be used by the authorization mechanism.

Authentication of the user to the RESTful service 222 can
be accomplished through the use of a software token asso-
ciated with a communication exchange. Authentication
tokens that can be passed through a back channel, for
example using a SAML token, JSON Web Token (JWT) or
some other token. Tokens permit the use of digital signatures
that can be used to identify the source of the token. Tokens
also allow the use of XML Signature and XML Encryption
for message-level security. SAML tokens comprise the
definition found in the OASIS WS-Security SAML Token
Profile standard (February 2006). Secure JSON web tokens
may be substituted. Secure JSON web tokens may use:
JSON Web Signature (JWS), JSON Web Encryption (JWE),
JSON Web Algorithms (JWA), JSON Web Key (JWK), and
Simple Web Discovery (SWD). SAML assertions comprise
the definitions found in the OASIS Security Assertion
Markup Language (SAML) v2.0 (March 2005). SAML
assertions can be protected, encoded, encrypted, and verified
using other techniques suitable to serve in secure exchanges
described herein.

An assertion, SAML token, SAML assertion, or some
other token, for example from SAR 212, or some other data
source, can be passed directly, or wrapped in another token,
to the RESTful service, with embedded information dem-
onstrating the provenance of the token and additional attri-
butes. Requests to a RESTful service can reuse tokens or
assertions in the authentication decision-making process if
consistent with the security policy of the RESTful service,
authorization components 206, or attribute source. For
example use of the token may require that the RESTful
service trusts the issuer of the token, the expiration time of
the token has not elapsed, and the token has not been
tampered with, etc. Tokens can be created once the user has
been authenticated, for example to OpenlD Provider 210,
and included or associated with future request in order to
accelerate subsequent authentication of the user to the
RESTHul service. The validation of the token may require
the exchange of information from the RESTful service to the
issuer, or its agent, of the token (i.e. over a back channel).
Tokens used for authentication can be found in various
authentication profiles, for example OpenlD, SAML,
OAuth, and Kerberos. An additional example is illustrated in
FIG. 3 using the OpenID authentication profile. The use of
the CAS as an implementation option supports the creation
of tokens called Ticket Granting Tickets (TGT) and Service
Tickets (ST). Validation of STs can support the exchange of
additional back-channel information added to augment attri-
bute information that can be used by an authorization filter.

20

25

30

35

40

45

50

55

60

8

An example of the authentication process is diagrammed in
FIG. 3. Not all of the steps described are required and some
may be unnecessary in certain deployments such as
machine-to-machine access to a RESTful service. The user
makes a request at 302 to the RESTful service 304, whose
components are represented in the diagram using graphical
elements with horizontal background lines (304, 306, 372,
366). The authentication filter receives the request 306 and
optionally processes the request. The user’s agent, for
example a browser, is redirected to the Replying Party,
whose functions are represented in the diagram using
graphical elements with a solid white background (308-340,
348, 360, 364). Replying Party determines if a TGT, or ticket
granting cookie, issued by the Replying Party is identifiable
in the user agent’s cache 308. If no ticket is identified, the
user can authenticate and is asked for an OpenlD identifier
310. The user may choose from a list of OpenlID providers
320 or given the opportunity to register for an OpenlD
provider 312-318. If the OpenlD identity is retrieved 320,
preparations required in the OpenlD profile are performed in
322, and 324. If the OpenlD provider does not exist at 326,
aretry at 310 or failure message at 328 occurs. If the OpenlD
provider does exist at 326, a file at 334 is used to connect or
if no file exists user input is requested at 332. If successful
at 336, a fetch attribute request is formulated at 338 and the
user’s agent, for example a browser, is redirected at 340 to
the OpenlID provider of choice 342 whose components are
represented in the diagram using graphical elements with
slanted background lines (342, 344, 346, 350, 352, 356, 358,
362, 368, and 370). The OpenlD provider challenges the
user that can include requiring multifactor authentication
such as a smart card 342, for example a CAC (NIST IR
6887) or PIV (FIPS PUB 201-1). The proffered credentials
are validated at 344 and, if valid, OpenlD authentication
continues 350, 352. Any failures result in an error message
348 to the user through the Relying Party. Information in the
user’s credentials or information known to the OpenlD
provider can be used to search and identify additional
attributes. Attributes may be returned from a data store, for
example SAR 354, represented by the graphic element with
reverse slanted lines (354). Attributes are retrieved at 356
and TGT (if needed) and ST are generated at 358. A string
identifying the TGT can be stored in a tightly scoped cookie
(which could be called the ticket granting cookie) in the user
agent’s cache by the OpenlD Provider. The ST or a reference
to the ST may be appended to the redirect URL or stored in
the user cache for use by the Relying Party. The Relying
Party component validates the ST at 360 and receives
additional attributes that can use a protected SAML assertion
or SAML token 362 from the OpenlD Provider. The Relying
Party relying upon the authentication by the OpenlD Pro-
vider, issues a ST specific to the user request for access to
the REST{ul service 364. The Relying Party creates a TGT
to accelerate identification of the user in future requests by
the requester. The user’s agent is redirected to the RESTful
service and uses the ST to authenticate. During the valida-
tion of the ST 366 that can be over a secure communications
channel such as the Secure Sockets Layer (SSL) or Trans-
port Layer Security (TLS) protocols, the RESTful service
receives the additional attributes that can be in a secure
token such as a protected SAML assertion or SAML token.
More specifically, secure exchange of attributes can use SSL.
3.0 or TLS 1.0 for transport-level security and XML Sig-
nature and XML Encryption for message-level security.

US 9,485,248 B2

9

Additional ways of representing content secured with digital
signatures or message authentication codes include: JSON
Web Signature (JWS), JSON Web Encryption (JWE), JSON
Web Algorithms (JWA), JSON Web Key (JWK), and Simple
Web Discovery (SWD).

If information in the cache of the user’s agent, for
example a browser cache, allows identification of a TGT by
the Relying Party the TGT can be immediately validated

10

stituted as long as the validation of the token used in
authentication to the service is validated through commu-
nication with the issuer.

OpenlD Provider 426 accepts authentication credentials
428, which can be multi-factor, and can include X.509
attributes stored on, for example, a smart card. An example
of data exchanged between user 402 through their agent 404,
and OpenlD Provider 426 is shown in Table 2.

TABLE 2

Data Received from Smart Card During Authentication

2012-03-16 13:40:59,823 DEBUG
[org.jasig.cas.adaptors.x509.web.flow.X509CertificateCredentialsNonInteractive Action]
(http-8443-1) Certificate found in request.

2012-03-16 13:40:59,845 DEBUG
[org.jasig.cas.adaptors.x509.authentication.handler.support. X509CredentialsAuthentication
Handler](http-8443-1) Evaluating CN = MANN.AIRE.AF.2001392207, OU = USAF, OU =

PKI,

OU = DoD, O = U.S. Government, C = US, SerialNumber = 251826

2012-03-16 13:40:59,846 DEBUG
[org.jasig.cas.adaptors.x509.authentication.handler.support. X509CredentialsAuthentication
Handler](http-8443-1) Found valid client certificate

2012-03-16 13:40:59,846 INFO
[org.jasig.cas.adaptors.x509.authentication.handler.support. X509CredentialsAuthentication
Handler](http-8443-1) Successfully authenticated CN = MANN.AIRE.AF.2001392207,
OU = USAF, OU = PKI, OU = DoD, O = U.S. Government, C = US, SerialNumber = 251826
2012-03-16 13:40:59,846 INFO [org.jasig.cas.authentication.AuthenticationManagerImpl]
(http-8443-1) AuthenticationHandler:

org.jasig.cas.adaptors.x509.authentication. handler.support. X509CredentialsAuthenticationH
andler successfully authenticated the user which provided the following credentials:

CN = MANN.AIRE.AF.2001392207, OU = USAF, OU = PKI, OU = DoD, O = U.S.
Government, C = US, SerialNumber = 251826

368. Identification of a valid TGT allows the Relying Party
to rely on the previous authentication by the OpenlD Pro-
vider, which can be further restricted based on configuration
and the elapsed time. The Relying Party can issue an ST
specific to the instant request 370 and will return additional
attributes that can be in a secure token, to the RESTful
service 372 during the ST validation step 366.

An example of the process flow discussed above is shown
in FIG. 4. Each column represents the actions performed by
the actors introduced in FIG. 1. The user 402 through their
agent 404, for example a browser or similar computer
program, makes a request at 408 to a RESTTful service 406.
Redirection at 410 is made to Relying Party 412, which
optionally receives the choice of OpenlD provider 414 from
the user 402 and executes preparations in 416, 418, 420, and
422 as needed to communicate with the selected OpenlD
Provider at 424 then redirects user agent 404 to OpenlD
Provider 426.

The authentication profile used as an example in FIG. 4
can be implemented using the CAS architecture. Any similar
authentication profile with an implementation architecture
that requires the validation of the authentication object
would be suitable. In CAS, for example, the TGT can be
identified using information in a secure cookie in the agent
cache containing a string identifying the ticket-granting
ticket. The TGT issuer can use the string to identify the TGT
in its database to determine if authentication is required. If
the user agent possesses a valid TGT the issuer will issue an
ST for use by the user agent for a specific service without
additional authentication. An ST is an opaque string recom-
mended to be 256 characters in length that may be passed in
the redirect URL to the RESTful service. The issuer receives
the ST from the RESTful service and checks its internal
database to determine validity. Although the OpenlD
authentication profile is used in the figure, other authoriza-
tion profiles and implementation architectures may be sub-

35

40

45

50

OpenlD Provider 426 receives credentials providing
X.509 attributes, which may be similar to the information in
Table 2, however other types and representations of authen-
tication credentials are permissible. The credentials are
checked at 430 and requested attributes are identified 432,
using, for example, the Attribute Exchange (AE) OpenlD
2.0 protocol. Attributes may be retrieved from various data
sources, for example request at 434 to SAR 436, which may
return requested attributes, for example by creating or pass-
ing a protected SAML assertion or a SAML token 438
returned at 440. At this point OpenlD Provider 426 prepares
an ST in response to request 424. If using a CAS imple-
mentation of the authorization infrastructure, a TGT may
also be generated to accelerate future communication with
Relying Party 412. Other mechanisms may be substituted as
long as Relying Party 412 can receive attributes that can be
in a secure token.

At 442 OpenlD Provider sends the ST to Relying Party
412 in response to request 424 a SAML assertion, SAML
token, attribute information, or other information may be
included in this exchange. The identity provider credential,
for example the OpenlD credential, can also be passed from
426 to 412, making the credential available to the Relying
Party. Processing by the Relying Party at 444 triggers the ST
validation request 446 that can be over a secure channel such
as SSL or TLS. The secure channel used in the instant
specification supports a SOAP exchange using one or more
SAML assertions over TLS but other tokens and secured
channels are possible. The validation request response at 450
also allows the additional attributes retrieved by the OpenlD
Provider 426, possibly from multiple data sources, to be
sent. Optionally, the identity provider credential, for
example the OpenlD credential, can also be passed in the
response to the validation request, optimally in the SAML
token. Additional attributes could be, for example, attributes

US 9,485,248 B2

11

describing the user based on PKI X.509 attributes retrieved
from the smart card inserted into the card reader described
above. Attributes may have been passed from SAR 436, for
example over SOAP using a SAML assertion passed at 440.
Additional attributes may be gathered and included, for
example attributes specifically requested using the Attribute
Exchange (AE) OpenlD 2.0 protocol. Aftributes can be
retrieved from multiple data sources, for example DBMS,
databases, database gateways, hardware devices, sensors,
computational units, and combinations thereof.

Examples of PKI X.509 attributes include the subject’s
name, subject’s public key, subject’s e-mail address, and
issuer of the attributes. Subjects can be persons, applica-
tions, or systems. Attributes may identify privileges the
subject may have to execute operations on a system, such as
create, read, update and delete operations. As a result of the
communication between the relying party and OpenlD pro-
vider, a token, which may be a SAML token, JWT, or some
other means for protecting an assertion containing additional
attributes, can be kept at Relying Party 412 for subsequent
authentication requests by user 402 for this or other services,
which could include RESTful services. Relying Party 412
can also cache the identity provider credential, for example
the OpenlD credential, if passed OpenlD Provider 426. The
amount of time the assertion or credential can be relied upon
can be specific to the implementation and configuration of
Relying Party 412 and OpenlD Provider 426. Attributes that
change frequently may require a SAML assertion that carries
within it a shorter expiration date or time.

In the example implementation shown in FIG. 4, Relying
Party 412 creates a ST specific to the initial user request at
448 for the RESTful service 406. Redirection of the user
from Relying Party 412 back to the RESTful service 406 at
452 allows the authentication filter, or similar RESTful
service component, to read ST at 454. Optionally, the
identity provider credential, for example the OpenlD cre-
dential, can also be passed in the redirection of the browser
to the RESTHul service at 452. The authentication filter then
requests validation of the ticket at 456 from Relying Party
412 which validates at 458 and returns validation informa-
tion encapsulated, for example in a protected SAML asser-
tion, SAML token, or some other assertion. Additional
attributes that may be useful to the RESTful service are
passed in validation exchange 460. The identity provider
credential, for example the OpenlD credential, can be passed
in this exchange. These additional attributes can be sent at
462 to an authorization component 464 to determine access
of the now authenticated user in the authorization at 466. In
response to the authorization request, access is permitted or
denied at 468, which determines the content sent to the user
at 470.

FIG. 5 provides an example of a high-level view of the
application of authentication 504 and authorization 506
filters. RESTful service 502 uses the authentication filter to
authenticate the requester at 504. The PEP, typically embed-
ded at a “choke point” 506 in RESTful service 502, formu-
lates at 508 a call to PDP 510, represented in the diagram
using graphical elements with slanted background lines
(510, 512). The PDP may have access to additional attributes
from the authorization procedure. For example, the PDP
may have access to other attributes passed in the RESTful
services call, known by the RESTful service, or available
from data sources, for example databases, SARs or attribute
information points. PDP 510 provides a robust authorization
decision capability that can be executing on the same or
different computer system, server, or node. Communications
between the PEP to the PDP is optionally done using secure

10

15

20

25

30

35

40

45

50

55

60

65

12

mechanisms, for example TLS or SSL. communications
channel and/or SAML tokens over HTTP SOAP.

The PDP evaluates the request from the PEP at 510, for
example using XMlL-based techniques such as a rules
engine. Examples of rules engines include XACML, Drools,
and EnterSpace® Decisioning Service (ESDS) (Jericho Sys-
tems Corporation). After evaluation, PDP 510 issues an
authorization decision at 512 that can be based in part on the
additional attributes passed to the RESTful Service during
the validation of the ST used to authenticate the user to the
RESTful service. The user can be denied 514 or allowed 516
access to the RESTful service 502. A PDP may respond to
multiple PEPs, or it may respond to a single PEP, or it may
use a fail-over to another PDP, or it may be embedded with
a PEP, or other architectural relationships or combinations
thereof. The PDP infrastructure can be centrally managed.
Access control rules or policies may be pushed to PDPs or
pulled by PDPs. Use of rules or policies allows advanced
authorization techniques such as Role based Access Control
(RBAC), Attribute Based Access Control (ABAC), Risk-
Adaptable Access Control (RAJAC), and other approaches.
Rules or policies may be stored at a Policy Administration
Point (PAP).

The system, coupled with retrieved additional attributes
allows fine grain control, for example, to access data,
resources, or operations that are sensitive, that could put
health and safety in jeopardy, or that could result in financial
liability. Examples related to special sensitivity include
military data, trade secret data, business records, medical
data, operations on databases, to name a few. Examples
related to health and safety include health records, access to
electronic medical equipment, police equipment, fire equip-
ment, operations on military databases, to name a few.
Examples related to financial liability include financial
records, stock trading records, access to electronic financial
computer resources, government records, to name a few.
Authorization as described herein could be used for access
to physical spaces, such as a request to open a door from a
browser or other application on a mobile device involving a
RESTful web service and many other related scenarios. An
example of interactions between the system described and
the user are shown in FIGS. 6A-6D. As shown in the FIG.
6A example, requests to the RESTful service may be made
using a web browser 602 by entering the URL of the desired
RESTful service 604. Although the Morzilla Firefox®
browser is shown, any browser can be used. A partial list of
common browsers includes: Internet Explorer® (Microsoft
Corporation), Chrome® (Google Corporation), Safari®
(Apple Inc.), Opera® (Opera Software ASA), and Netscape
Navigator® (AOL Corporation). RESTful interfaces can
also be accessed directly by an application without the need
for a browser. Examples of applications that may interact
with RESTful services include electronic health record
applications, financial trading applications, remote voting
applications, and military tactical applications. These and
similar applications could be stationary or mobile, for
example hosted on eReaders, tablets, personal digital assis-
tants, cell phones, net books, smartphones, laptops, and
other devices. URL 604 specifies secure communication
over the HTTPS protocol but the unsecured HTTP protocol
can be used as shown 408 in FIG. 4. Alternative protocols to
HTTP can be used, such as SPDY or Stream Control
Transmission Protocol (SCTP).

As shown in the FIG. 6B example, GUI 608 shows an
example of how OpenlD providers can be selected from a
list using a drop-down menu 610. A partial list of alterna-
tives to a drop-down menu include: radio buttons, check

US 9,485,248 B2

13

boxes, scrollable lists, auto-completing/auto-suggesting text
field, multi-layered tree, or allowing the user to type in the
OpenlD provider.

Authentication of the user by the OpenlD provider results
in attributes being returned to the Replying Party that may
be sent to a RESTful service for uses such as authorization.
Approaches to the number and type of attributes include
returning all attributes, limiting attributes by configuration,
limiting attributes by security clearance of the receiver, or
allowing the user to select the attributes returned, for
example. As shown in the FIG. 6C example, GUI 614 shows
how users can specify attributes, such as employee number
616 from an interface. Retrieval of specific attributes can be
supported by the use of the Attribute Exchange (AE) pro-
tocol in OpenlD 2.0. Table 3 shows an example of data
specifying attributes exchanged between the Replying Party
and the OpenlID Provider. Replying Party example in Table
3, was implemented using CAS, other implementations are
equally suitable. Table 3 demonstrates the Attribute
Exchange (AE) protocol in OpenlD 2.0, which permits
attributes to be specified as “required” or “optional.”
Required attributes shown in Table 3 include: e-mail
address, serial number, initials, and common name. Optional
attributes shown in Table 3 include: middle name, given
name, employee number, and favorite color.

TABLE 3

10

15

20

14

request is made to OpenlD Provider 714 redirection of the
user agent occurs at 712 allowing the challenge of the user
for identifying information. The user provides authenticat-
ing information that can vary in strength from simple
authentication using passwords to multifactor authentica-
tion, for example using hardware tokens or smart cards with
embedded PKI certificates. Multifactor authentication can
be used, especially when the higher strength credentials can
be used to identify the attributes of the user in a trusted
attribute store. One example of a higher strength credential
is a PKI certificate issued by a trusted certificate authority.
Hardware-based or software-based components meeting
Federal Information Processing Standard (FIPS) 140-2 cer-
tified cryptography modules may be used to support PKI
functionality. Examples of vendor FIPS 140-2 certified
cryptography modules available include BlackBerry (Re-
search In Motion Ltd.), Astro (Motorola Solutions, Inc.),
OpenSSL Cryptographic Module (Red Hat Inc.), NetScreen
(Juniper Networks, Inc.), and Catalyst (Cisco Systems, Inc.).

In addition to their use in authenticating a user, PKI
identifiers, such as an X.509 user identifier, can be used to
locate additional attributes associated with the user. Such
additional attributes may be directly addressable by the
OpenlD Provider 714 or retrieved at 716 from one or more
data stores, such as a Relational database management

Data Specifying Attributes for Retrieval

2012-03-16 13:40:43,793 INFO

[com.jericho.es.openid.web.servicesJerichoOpenldConsumerService] (http-8443-1)
https:/sbiresds01:8443/cas/openid?service=https%3A%2F%2Fsbiresds02%3 A8443%2Fc

as%?2Fcallop
2012-03-16 13:40:43,794 INFO

[com.jericho.es.openid.web.servicesJerichoOpenldConsumerService] (http-8443-1) [

OpenID Provider URL :

https://sbiresds01: 8443/cas/openid?service=https://sbiresds02:8443/cas/callop&openid.
ns=http://specs.openid.net/auth/2.0&openid.claimed_id=http://specs.openid.net/auth/2.0/
identifier_select&openid.identity=http://192.168.220.10:8080/cas/users/MANN.AIRE.AF.
2001392207&openid.return_to https://sbiresds02:8443/cas/callop&openid.realm=https://
sbiresds02:8443/cas/callop&openid.mode=checkid_setup&openid.ns.sreg=http://openid.n
et/sreg/1.0&openid.sreg.required=mail sn,initials,cn&openid.sreg.optional=middleName,
givenName,employeeNumber&openid.ns.ext2=http://openid.net/srv/ax/1.0&openid.ext2.
mode=fetch_request&openid.ext2.type.middleName=http://schema.openid.net/namePerson/
middleName&openid.ext2.type.mail=http://schema.openid.net/namePerson/mail&openid.ext
2.type.sn=http://schema.openid.net/namePerson/sn&openid.ext2.type.initials=http://sche
ma.openid.net/namePerson/initials&openid.ext2.type.cn=http://schema.openid.net/nameP
erson/cn&openid.ext2.required=mail,sn,initials,cn&openid.ext2.type.givenName=http://sch
ema.openid.net/namePerson/givenName&openid.ext2.type.employeeNumber=http://sche
ma.openid.net/namePerson/employeeNumber&openid.ext2.type.favoriteColor=http://mak
otogroup.com/schema/1.0/favoriteColor&openid.ext2.if available=middleName,givenName,

employeeNumber,favoriteColor]

The selected OpenlD provider requires the user to offer
proof of their identity during the authentication challenge.
As shown in FIG. 6D, Instructions 620 can be displayed on
the user agent because it has been redirected to the OpenlD
provider. Multi-factor authentication can be used, for
example requiring the user insert a smart card into a card
reader and entering their Personal Identification Number
(PIN) 621.

One example of the use of tokens allows Single Sign-On
(SSO) capability, as shown in FIG. 7. User’s agent, for
example browser 702, accesses through 704 to RESTful
service 706, named REST WS-1 in the figure. An authori-
zation filter, or equivalent, at the RESTful service uses a
mechanism, such as a browser redirect at 712, to direct the
user’s agent at 708 to Relying Party 710. Redirection allows
the user to select their choice of OpenlD provider that serves
as the authenticating component. When authorization

50

55

60

65

system (RDBMS) or LDAP 720. Attributes can be encap-
sulated in a tamper-evident envelope, such as SAML asser-
tion 722, possibly using SAR 718. OpenlD Provider 714
will create and make available tokens ST and TGT sent at
724. The identity provider credential, for example the Ope-
nlD credential, can also be passed in this exchange. The
TGT 1is used to accelerate subsequent authentication
between Relying Party 710 and OpenlID Provider 714. The
ST issued by the OpenlD Provider is used to establish
authenticated communication between Relying Party 710
and OpenlD Provider 714. In the OpenID example archi-
tecture, Relying Party 710 communicates with OpenlD
Provider 714 to validate the ST. This validation “back-
channel” reply at 724 can include additional attributes
concerning the user in an assertion that can be a SAML
assertion 726. Other data exchange approaches between
Relying Party 710 and OpenlD Provider 714 can be substi-
tuted.

US 9,485,248 B2

15

After successful user authentication, Relying Party 710
issues a TGT identifier to the user agent’s cache 702 can be
in a secure web cookie and makes an ST available specific
for REST WS-1 706 authentication, for example by append-
ing the ST to the redirection URL. The identity provider
credential, for example an OpenlD credential, can also be
passed in this exchange. REST WS-1 706 communicates
with Relying Party 710 for ST validation. This validation
“back-channel” reply at 728 can include the additional
attributes that can be in a protected SAML assertion or
SAML token 730. The additional attributes can be used for
any purpose by REST WS-1 706, but are especially useful
for determining if the user is authorized to access data or
functionality available through the RESTful service.

Subsequent request 732 to a suitably configured RESTful
service at 734 (named REST WS-2), demonstrates SSO
capability. REST WS-2 734 requests user authentication at
736 and redirects the user agent 702 to Relying Party 710
that was used previously to authenticate the user to REST
WS-1 706. Relying Party 710 identifies the TGT using
information in the user agent’s cache left during the previous
authentication. Relying Party 710 relies on the TGT it
created for authentication, if it is still valid, instead of
challenging the user for authentication credentials.

Relying Party 710 creates an ST (that may be passed by
appending it to the URL redirection string) that will be used
between agent 702 and REST WS-2 734. The identity
provider credential, for example an OpenlD credential, can
also be sent in this exchange if it was passed by OpenlD
Provider 714 and cached by Relying Party 710. Upon receipt
of'the ST by REST WS-2 734, an ST validation request will
be sent to Relying Party 710. Validation at 738 allows
additional attributes to be passed in a protected SAML
assertion or SAML token 740 or some other token. SAML
assertion or token 740 may be identical to SAML assertion
or token 730 or it may be reissued depending on several
factors. Factors may include the expiration of the SAML
assertion or related certificates, the dynamic or static nature
of the attributes, the nature of the RESTful service, external
factors such as national threat level, time of day, current
weather, geographic location, or configuration settings such
as level of assurance or user clearance requirements. Expi-
ration of the assertion or other change in circumstance or
external factors may trigger a RESTful service to terminate
further communications until the user authenticates to the
identity provider again, which could be an OpenlID provider,
and retrieves, through the exchange of new ST, newly
retrieved additional attributes, that can be passed in a
protected assertion, SAML assertion or SAML token.

REST WS-2 734 can use the additional attributes in the
assertion, for example, as part of authorization decisions
involving the identified user. It can be seen from the dis-
cussion that use of a TGT token from Relying Party 710 can
simplify authentication to multiple RESTful services. Fur-
ther, validation of the ST issued to each RESTful service for
the authenticated user allows the transfer of additional
attributes that can be used for the determination of autho-
rization to functions and data through each RESTful service.
This approach can be used from any device that supports a
browser, or other agent or application, such as eReaders,
tablets, personal digital assistants, cell phones, net books,
smartphones, laptops, and other mobile devices.

One possible approach can provide an SSO solution for a
secured Web site, allowing a user to login once and be able
to access multiple RESTful Web services using, for
example, an Asynchronous JavaScript and XML (AJAX)
framework or RESTful client. In one example, the AJAX

10

15

20

25

30

35

40

45

50

55

60

65

16

technique is used, allowing computer programs, for example
web applications, to send data to, and retrieve data from, one
or more servers asynchronously (in the background) without
requiring constant re-authentication of the user. Ajax can use
the XMLHttpRequest object, which can be implemented in
ActiveX or JavaScript, XML or JSON, and presentation
languages such as HIML, XHTML, and CSS. Examples of
available Ajax frameworks include ASP.NET, AJAX,
jQuery, MooTools, and YUI Library as representative
examples. An example summarizing the discussion above is
shown in FIG. 8. User 802 triggers the authentication step by
accessing a secured website 804, which may use Ajax or
similar technology, operable to invoke the authentication
process shown in the figure. Access to the website can be
through a RESTful architectural style, as was shown in FIG.
4, but any request triggering the authentication scheme is
possible. For example, use of SOAP, SOAP RPC over
HTTP, or non-HTTP requests to, for example, a custom API
to a service connected over a network. In addition, other
authentication profiles, or combinations thereof, can be used
for the initial request, such as OAuth, Shibboleth, Informa-
tion Card, Janrain, Forgerock, or OpenAM.

Using OpenlD as the authentication protocol, FIG. 8
shows an example of access to Secured Website 804 trig-
gering redirection of User 802 at 808 to Relying Party 806
for user authentication. Secured Website 804 may also act as
a proxy, serving as the agent for the user. The OpenlD
Identifier (a URL or XRI) is retrieved at 810. The OpenlD
string is processed (normalized) at 812 to create a confor-
mant identifier. Relying Party 806 marshals any information
for initiating requests at 814, possibly using HTMI.-Based
discovery, Yadis or XRI resolution protocols. Relying Party
806 and selected OpenlD Provider 822 (optionally)
exchange a shared secret at 816 for secure communications.
An attribute claim is (optionally) prepared at 818, using the
OpenlD attribute exchange (AE) extension, to request spe-
cific attributes. The OpenlD Authorization request is made at
820, either directly or through redirection. User 802 is
redirected to OpenID Provider 822. User 802 submits cre-
dentials at 824 that can be based on multi-factor authenti-
cation. Examples of multi-factor authentication include, for
example, may be at least two of the factors: fingerprint,
knowledge based, voice, palm, physical token, hardware
device, mobile device, smart card, and PIN. The user is
authenticated at 826, for example by validating the creden-
tials, for example cryptographically or by accessing data
sources. Alternately, a TGT previously issued by the OpenlD
Provider 822 could be used to authenticate, removing the
need for the user to reenter their authentication credentials.
Requested or preconfigured attributes are identified at 828
and missing attributes are retrieved from data sources. For
example, a request for attributes using SAML could be
requested at 830, resulting in an attributes look up at 834 by
SAR 832. Attributes returned from many data sources are
possible and some attributes may be returned in one or more
assertions, SAML assertions, or possibly in a tamper-evident
SAML token at 836.

Relying Party 806 receives a TGT, if it did not have one,
and a ST at 838 for use with OpenlD Provider 822. The
identity provider credential, for example an OpenlD creden-
tial, can be sent in this exchange if cached. ST may be linked
to User 802, allowing Relying Party 806 to retrieve separate
STs for separate users on separate requests. Relying Party
806 optionally processes ST at 840 and requests validation
of'the ST at 842, allowing OpenlID Provider 822 to return the
additional attributes with validation message at 844. OpenlD
Provider 822 and Relying Party 806 can also exchange an

US 9,485,248 B2

17

assertion, SAML assertion, or token at 838. The identity
provider credential, for example an OpenlD credential, can
also be sent in this exchange and cached by Relying Party
806. Additional attributes may have been from data sources
accessed, for example, by SAR 832, returned in an assertion,

18
Relying Party 806 to RESTful Service 860. Tickets may be
passed directly, or indirectly (i.e. through the use of a
browser or other agent). An example of a ST issued by
Relying Party 806 and used to authenticate to RESTful
Service 860 is shown in Table 4.

TABLE 4

ST Authentication to RESTful Service

2012-03-16 10:44:50,293 INFO [org.jasig.cas.Central AuthenticationServicelmpl] (http-4843-1)
Granted service ticket [ST-1-NGdGiAdZT7xbIE2LY GPp-cas]for service [https://sbiresds02:
8443/DemoRestServiceCasified/resources/threatlevel

protected SAML assertion or tamper-evident token such as
SAML token 834. Upon verification at 848, Relying Party
806 issues a TGT, if one does not exist, and makes available
an ST specific to the interaction at Secure Website 804 at
850. Secure Website 804 requests validation at 852 trigger-
ing validation by Relying Party 806 at 854. The validation
message may include attritional attributes from Relying
Party 806 at 856. Additional attributes may be identical to
attributes retrieved or known by OpenlD Provider 822 or
attributes may be processed, augmented, replaced, removed,
or added to by intermediaries, for example Relying Party
806. Additional attributes may be used by Secure Website
804 or passed to other components, sites, or environments,
possibly on different computer systems, servers, or nodes
that can use a tamper-evident token.

The authentication described above relies upon User 802
submitting authentication credentials at 824. Alternatively,
Secure Website 804 could supply credentials that can be PKI
credentials, at 824. Request for attributes at 830, would then
be based on attributes known about the by Secure Website
804 instead of a user of the secure website. Consequently,
authentication and authorization at RESTful Services may
be based on attributes associated with Secure Website 804.
The identity of the user of the site could be kept secret from
calls to RESTful services or disclosed. Further, Secure
Website 804 could associate an identification object to each
user. RESTful Services could use the user identifier to track
activity, sessions, and other information, on a Secure Web-
site. This allows use of Secure Website 804 authentication
credentials instead of user credentials, providing proxy
functionality and enhancing the privacy of the user inter-
acting with a RESTful service. Returning to authentication
based on User 802 credentials, behavior of User 802 on
Secured Website 804 may trigger a request to RESTful
Service 860, for example triggering a call to determine the
current national security threat level at 858. RESTful Ser-
vice 860 redirects to Relying Party 806, which may identify
User 802 based on the TGT issued previously. Relying Party
806, may then issue an ST without requiring presentation of
credentials by User 802 specific to User 802 for access to the
REST(ul Service 860, which could be a RESTful gateway
interfacing to other services. RESTful Service 860 commu-
nicates with Relying Party 806, for authentication at 826.
Relying Party 806 returns ticket at 864 to authenticate User
802 on Secured Website 804. The identity provider creden-
tial, for example an OpenlD credential, can also be sent in
this exchange. Validation of the ST at 866 allows Relying
Party 806 at 868 to send additional attributes to RESTful
Service 860 that can be in an assertion, protected SAML
assertion or a tamper-evident token, such as a SAML token.
Other profiles and protocols could be used in place of the
OpenlD ticket validation to exchange information from the

15

20

25

30

35

40

45

50

55

60

65

The example in Table 4 shows the granting of service
ticket 850 specifically for User 802 by Relying Party 806 for
RESTful service 860. The SAML assertion in the example
has been excised for brevity. In this example implementa-
tion, the ST, shown in Table 4, remains at the Relying Party
and the ST reference “ST-1-NGdGiAdZT7xbIE2LYGPp-
cas” is passed during the redirect at 858. Other implemen-
tations are possible. The authentication filter at the RESTful
service is specially configured to accept and act on the ST
reference.

Once authentication information and additional attributes
are received, RESTful Service 860 may request authoriza-
tion at 870 from a PDP or decisioning service that can be
ESDS 872. The request is evaluated at 874 and a response
returned at 876. RESTful Service 860 responds to request
858 at 878. In this way, the TGT issued by Relying Party 806
allows other requests triggered by the behavior of User 802
on Secured Website 804 to be serviced by other RESTful
services without requiring entering the user credentials, i.e.
inserting a smart card and typing a PIN. This approach
described above provides additional benefit with client-side
implementations, such as Ajax. The degree of security of the
client or secured website can be in question based on the
source of the request, examples include requests from a
non-local IP network range, requests from outside a Virtual
Local Area Network (VLAN), a request from a different
physical location (for example, outside of a Sensitive Com-
partmented Information Facility (SCIF), a guarded area, or
commercial building), requests from outside of a “cloud”
implementation, or requests between differing security lev-
els (for example a client-side implementation calling ser-
vices requiring a specific security clearance). In these cases
SSO can be established using a relying party known to be
secure without requiring authentication information from
the requestor, which might not have adequate security.

Cloud computing environments offer many services, for
example Software as a Service (SaaS), Infrastructure as a
Service (laaS), Identity as a Service (IDaaS), Data as a
Service (DaaS), Platform as a Service (PaaS), Storage as a
Service (STaaS), etc. Cloud computing environments rely on
economies of scale where loosely coupled architectures
provide virtualization, scalability and device and location
independence. Cloud computing environments have autono-
mous domains, virtual organizations, and inter-cloud sys-
tems serving large numbers of users in an ad-hoc bases.
Access control becomes complex, since there may be no
ability to identify, locate, or access attributes of the requester
across the environment. The approach described above
allows attributes tied to a requester through their authoriza-
tion credentials will be transferred to the security domain of
the RESTHul service. This simplifies identification of appro-
priate attributes and the trust the RESTful system might
have in those attributes based on the provider or issuer.

US 9,485,248 B2

19

Trust in the attributes associated with the authenticated
user may be elevated because the infrastructure providing
the attributes can be certified for the exchange of classified
or sensitive attributes. For example, the RESTful application
may not be certified for exchanging classified information
(for example, attributes) about the user in a front channel
exchange but the use of a back channel within a certified
infrastructure may allow the passing of classified or sensi-
tive information about the user. The trusted back channel
allows information of a trusted nature to be used in autho-
rization decisions, providing more confidence in the autho-
rization process than possible from a front channel RESTful
service request.

Further, RESTful Service 860 receives attributes from a
trusted source, for example SAR 832, that can be identified
using a high-assurance token, for example a cryptographi-
cally signed token, assertion, protected SAML assertion, or
SAML token. Exchanged tokens may use, for example, SSL.
3.0 or TLS 1.0 for transport-level security and XML Sig-
nature and XML Encryption for message-level security.
Additional ways of representing content secured with digital
signatures or message authentication codes include: JSON
Web Signature (JWS), JSON Web Encryption (JWE), JSON
Web Algorithms (JWA), JSON Web Key (JWK), and Simple
Web Discovery (SWD).

One example of the use of a SAR implementation is
shown in FIG. 9. SAR retrieves attributes from one or more
data sources and can return them in a tamper-evident enve-
lope, such as an attribute statement in a signed SOAP
message. One implementation of SAR checks if the
requester is authorized to make the request for attributes
and/or checks if the requester is authorized to receive each
returned attribute from the request.

Client 902, which could be an OpenlD Provider, requests
attributes. The request could be for a specific set of attributes
or all attributes known about a specific entity. An X.509
identifier, such as a Distinguished Name (DN) issued by a
known certification authority, known to the SAR or SAR
data sources, could identify the entity. An example of a
shared knowledge environment would be a Privilege Man-
agement Infrastructure (PMI). HTTP Interface 904 accepts
requests from Client 902. The HTTP Interface 904, which
may be omitted, provides an interface capable to negotiate
a secure channel, such as TLS or SSL, and may be a web
service. In this way, Client 902 may mutually authenticate
with the HTTP interface 904 as part of a TLS or SSL 3.0
handshake, that can use an X.509 v3 certificate, and send a
SOAP bound SAML attribute query request to the SAML
Responder 906. The client certificate may be used to identify
the DN that will be used to bind to the data source. SAML
Responder 906 communicates using Data Source Connec-
tors 908 to one or more data sources, for example LDAP
910, SQL 912, or others 917. Data source connectors may be
operable to select the data store based on the type of
attributes requested. SAML Responder 906 creates a cryp-
tographically signed SAML attribute assertion 914 contain-
ing the retrieved attributes, which can be sent by HTTP
Interface 904 as 916 to Client 902. Use of a signed,
tamper-evident, assertion, which may be a protected SAML
assertion or a security token, provides higher assurance of
the origin and integrity of the attributes, however use of the
SAML assertion may be omitted or replaced with some other
protocol or mechanism.

A detailed example of data exchange with the SAR is
shown in FIG. 10. Client 1002, which may be an OpenlD
Provider, requests attributes that can use a SAML Attribute
Query Request at 1004. HTTP Interface 1006, forwards the

25

30

40

45

55

20

request at 1008 to SAML Responder 1010. If a secure token
is used in the request, such as protected SAML assertion or
SAML token, it is validated, for example using PKI valida-
tion and CRL checking on the SAML client X.509 certificate
at 1012. Additional methods for validating certificates could
be used, such as the Online Certificate Status Protocol
(OCSP). SAML Responder 1010 securely connects, if it is
not already, at 1014 to one or more data sources, represented
as Data Source 1016, which could be a DBMS or gateway
to other data sources. A request for attributes is sent at 1018
to Data Source 1016, which returns data at 1020. SAML
Responder 1010 builds a SAML assertion including data
from data source 1016 and cryptographically signs at 1022.
The assertion, which may be tokenized, is forwarded at 1024
to HTTP Interface 1006 for return to Client 1002 at 1026.
The SAR optionally includes a component that restricts what
attributes can be requested by the client. For example, a
requestor without a security clearance asking for all attri-
butes pertaining to a user would not be allowed to query
databases requiring a security clearance. Other examples
include information on or associated with the certificate used
by the client (which made be an OpenlD provider), for
example attributes, the signing authority, or information
retrieved based on identifiers on the certificate. In addition,
attributes that are retrieved from the data sources are evalu-
ated to determine if the requester is authorized to receive
them. For example, a clinician requesting all medical
records on a patient at another hospital might be authorized
to search medical databases but not authorized to receive
certain data the patient had requested to be kept private.
Other examples include information on or associated with
the certificate used by the client (which made be an OpenlD
provider), for example attributes, the signing authority, or
information retrieved based on identifiers on the certificate.
One or both rule engines may be controlled or owned by
different entities and/or operating in different environments,
possibly on a different computer systems, servers, or nodes.
Policy stores may be local or remote, or a combination
thereof.

FIG. 11 shows an examples of additional capabilities
discussed above. Client 1102, which may be an OpenlD
Provider, requests attributes that can use a SAML Attribute
Query Request at 1104. HTTP Interface 1106, forwards the
request at 1108 to SAML Responder 1110. If a secure token
is used in the request, such as a protected SAML assertion
or SAML token, it is validated, for example using PKI
validation and CRL checking on the SAML client X.509
certificate, at 1112. Additional methods for validating cer-
tificates could be used, such as the Online Certificate Status
Protocol (OCSP). SAML Responder 1110 securely connects
at 1114, if it is not already, and sends the request for
attributes at 1118 to Vault 1116. The request is evaluated.
Evaluation can use a rules engine at 1120. Available rule
engines include JAVA, XACML, Prolog, DTRules, Drools,
and ESDS. Factors that may affect the attributes Client 1102
is permitted to query include the attributes, credentials, type,
or reputation of the user or Client 1102. Additional factors,
such as such as national threat level, time of day, current
weather, geographic location, or configuration settings such
as level of assurance or user clearance required to access a
data source may affect the attributes that can be requested.
Requests for attributes that are permitted by the rules engine
are sent at 1122 to Data Source 1124, which can represent
multiple databases, a DBMS, or a gateway to other data
sources. Data Source 1124 returns data at 1126, which is
evaluated against authorization rules by Vault 1116. Attri-
butes returned from allowed data sources are reviewed to

US 9,485,248 B2

21

determine if Client 1102 is permitted to receive them at
1128. Vault 1116 securely sends permitted attributes to
SAML Responder 1110 at 1130. SAML Responder 1110
builds a SAML assertion from the data source response and
cryptographically signs at 1132. The assertion, which may
be tokenized, is forwarded to HTTP Interface 1106 at 1134
for return at 1136 to Client 1102, which may be an OpenlD
provider.

Benefits of the system described above are magnified
when integrated into an overarching PKI infrastructure,
which can span multiple security domains. Smart card-based
authentication using PKI uses standard formats such as
X.509 for encoding digital certificates or attribute certifi-
cates. Semantic interoperability can be achieved, for
example, by using similar X.509 directory hierarchies
between trusted certificate authorities. Thus X.509 identifi-
ers, such as DN or e-mail component can be used to identify
related attributes in a trusted data store. For example, the use
of X.509 in an LDAP-compliant data store provides attri-
butes related to the entity with the DN as well as the
organizational unit that the name is hierarchically associated
with. That is, the distinguished name from a digital certifi-
cate on a smart card could identify a corresponding DN in
an LDAP-compliant data source. Attributes or roles associ-
ated with the entity’s organization in the LDAP-compliant
data source could, for illustration, include attribute values
such as logistics, NATO, employee, and auditor. These
user-related attributes can be formulated into a tamper-
evident SAML assertion signed by a trusted entity, such as
the SAR. When a RESTful service validates a ST issued by
the component labeled the Relying Party, the additional
attributes from the X.509 directory can be included for use
by the service.

For example, a request to access shipping information
through a RESTful service might require an organizational
attribute “logistics” during the authorization of the authen-
ticated user. During the validation of the proffered ST, the
signed SAML assertion encoding the LDAP attributes is
returned using the back channel. The attribute values in the
SAML assertion can be traced to the trusted LDAP and its
use of the signed digital certificate read from the smart card
during the multifactor authorization step. Therefore the
possession of the required logistics attribute value by the
user is assured (to the level of trust of the underlying
infrastructure). The authorization process can identify the
request by the user as appropriate at least in part on
possession of the returned additional attributes without
requiring further interaction with the user. Other attribute,
role, and privilege information could be used.

Attributes sent over a back channel during authentication
to a RESTTul service can be applied to blue force tracking.
Military forces in the field use mobile devices that request
the location of friendly forces in their general area to prevent
fratricide. Attributes about the requestor, such as unit loca-
tion, secrecy of their current mission, types of weapons
carried, and regional threat status may be needed to decide
the correct response but are too sensitive to exchange over
a REST{ul service call. Use of a back channel exchange
allows sending of sensitive information known about the
user without exposing that information outside of a con-
trolled network. This is an example of the general case of
information being too sensitive for front channel exchange.

Attributes sent over a back channel during authentication
to a RESTful service can provide delegation capabilities.
Consumers may want to purchase merchandise or services
through a delegate, such as website that offers merchandise
or services from other merchants. The consumer can use an

20

25

40

45

50

22

authentication profile, for example OpenlD, to authenticate
to the website, which may be a Secured Website imple-
mented using AJAX. A request to a merchant made from the
Secured Website to a RESTful service will receive informa-
tion known about the requestor, including credit card infor-
mation, using the back channel exchange. Because the credit
card information was not sent in the RESTful service
request, the delegate (website that offers merchandise or
services from other merchants) will not know the credit card
account information.

Attributes sent over a back channel during authentication
to a REST{ul service can be applied to eVoting. Voters in
remote locations, for example soldiers, may use mobile
devices to cast votes. The voter can use an authentication
profile, for example OpenlD, to authenticate to the voting
website over a RESTful web service. Additional attributes
related to the user, such as social security number (SSN) or
voter registration number will be sent over the back channel.
The personal identifiers are not exposed over the front
channel and can be cryptographically signed to ensure
integrity and issuer name. The approach allows information
required for voting to be exchanged without passing the
information in the RESTful service request.

Attributes sent over a back channel during authentication
to a RESTTul service can be applied to access to electronic
health records. Clinicians may wish to access records held
by a remote provider over a RESTTful interface, for example
using a mobile device. Access to medical records may
require certain roles, hospital privileges, and/or licensure.
The institution receiving the request will receive the
required attributes from the back channel exchange, allow-
ing a greater trust in the trustworthiness of the information.
Sources of license information, for example, include state
medical licensing entities, emergency care certification enti-
ties, and medical provider certification boards. This allows
the attributes to be used to decide if the clinician is autho-
rized to view the records. Other examples include the
exchange of insurance information without risking medical
identity theft or the exchange of attributes and/or roles, such
as described in ASTM E1986-09, “Standard Guide for
Information Access Privileges to Health Information” Table
1 and 2, respectively. Those tables are hereby incorporated
herein by reference. Attributes sent over a back channel
during authentication to a RESTful service can be applied to
preserving or enhancing personal privacy. A user of a
protected RESTful service may not want to provide their
credentials for privacy reasons. An example can be fear of
retaliation for participating in a political discussion, fear of
exposing membership in a discriminated social group, fear
of submitting a complain, etc. A component, such as a
Secure Website, for example as described above, could
supply credentials to a RESTful service. The requirement to
provide credentials of a certain strength, for example PKI
credentials, would be met but the user’s identity would be
protected.

Attributes related to health care in ASTM E1986-09
include roles held by data users. Examples include attributes
grouped by categories such as nurse, pharmacist, and phy-
sicians. These categories include subcategories, for example
the category “physician” includes chiropractor, pathologist,
and psychologist. These roles can be identified using object
identifiers (OIDs) and can be mapped to SNOMED CT
identifiers. Such standardized attributes allow a meaningful
exchange of information across the back channel and can be
applied to similar standardized attributes in other fields.
ASTM E1633-08a, “Standard Specification for Coded Val-
ues Used in the Electronic Health Record,” provides an

US 9,485,248 B2

23

additional example. Coded values categories in ASTM
E1633-08a, such as Confidentiality Status have subcatego-
ries such as AIDS patient, HIV patient, and Psychiatric
patient provide attributes that should be exchanged across a
back channel to ensure sensitive information is not exposed,
expose of which can trigger fines due to breech laws. Other
attributes used in the field of medical information technol-
ogy are widely known (see: U.S National Library of Medi-
cine, Source Vocabularies, 2012AA Release), including:
SNOMED CT, DSM-1V, ICD-9, ICD-10, MeSH, LOINC,
RxNorm, and X12.

CAC attributes useful for authentication and authorization
are found in NIST IR 6887, Appendix D—DoD Common
Access Card (CAC) Data Model. Appendix D is hereby
incorporated herein by reference. Department of Defense
directory attributes useful for authentication and authoriza-
tion are found in DoD Enterprise Directory Services Capa-
bility, Contact Attributes Specification (Jul. 14, 2009), which
is incorporated herein by reference.

The authentication and authorization techniques
described herein do not have to be executed at the first use
of'a RESTHul service. Authentication and authorization may
be achieved differently but behavior of the user, activity of
the user, external events, time-related events, or other con-
ditions may require stronger authentication of the user. This
requirement to raise the assurance level of a session could
employ the authentication and authorization techniques
described herein, for example by requiring the user to
provide a smart card to continue communications to a
RESTHul service based on changing conditions, such as a
request to access restricted data. The components and related
infrastructure described above can be implemented in many
ways. Users can communicate as described with any of
several available web browsers, for example Firefox,
Google Chrome, Internet Explorer, Opera, or Safari. Mobile
devices may use operating systems, for example Android
(Google Inc.), BlackBerry OS (Research In Motion Ltd.),
i0OS (Apple Inc.), Symbian OS (Nokia Inc.), Windows
Phone (Microsoft Inc.), and Brew (Qualcomm). Communi-
cation may use the Hypertext Transfer Protocol (HTTP) that
can be over TLS or SSL, also known as the Hypertext
Transfer Protocol Secure (HT'TPS) protocol. Users may also
use non-browser custom applications that support redirec-
tion over the HTTPS or the HTTP protocols. Additionally,
alternative protocols to HTTP or HTTPS can be used, such
as SPDY or SCTP. Requests for RESTful services can be
made from mobile devices, such as phone, laptops, personal
digital assistants, or similar devices.

RESTful services or web sites may be made available
over computer networks using general-purpose computer
servers and common operating systems. Examples of oper-
ating systems include: Unix, FreeBSD, Linux, Solaris,
Novell NetWare, Mac OS X, Microsoft Windows, OS/2,
TPF, and eComStation. RESTful services, web sites, authen-
tication components, and authorization components dis-
cussed herein can be executed in application server envi-
ronments, servlet containers, or custom system software.
Many computing platforms are available, such as the Java
Platform, Enterprise Edition (J2EE) that can support appli-
cation server environments. Examples include: GlassFish
(Oracle Corp.), WebSphere (IBM Corp.), JBoss (Red Hat),
and Apache Geronimo (Apache Software Foundation).
Many servlet containers are available, such as Jetty (Eclipse
Foundation), Apache Tomcat (Apache Software Founda-
tion), and Tiny Java Web Server (TJWS). Other computing
platforms and applications are available and can be substi-
tuted.

10

15

20

25

30

35

40

45

50

55

60

65

24

FIG. 12 shows an example representation of computer
hardware 1202 capable of supporting the component in
previous figures. Computers, or computing devices, may
include one or more processors 1214 with supporting cir-
cuits 1216, operable to access memory 1218. I/O interface
1220 permits communication with input devices 1222 and
output devices 1224 such as keyboards, monitors, smart card
readers, fingerprint readers, USB drives, etc. Computer 1202
communicates to one or more networks 1204 using proto-
cols, for example Transmission Control Protocol (TCP),
Datagram Protocol (UDP), and SCTP. Components that may
communicate with computer 1202 through network 1204
include Relying Party 1206, OpenlD Provider 1208, REST-
ful Service 1210, and SAR 1212. Other hardware architec-
tures, such as special-purpose appliances or embedded sys-
tems, and additional features known to those skilled in the
art are possible.

FIG. 13 shows an example of components in an imple-
mentation of the authentication/authorization system. Client
1302 is depicted as having processor 1304 and available
memory 1308 specifically configured and operable to
execute computer-executable instructions associated with
application 1306. Multiple processors can be used. Addi-
tionally, although a single memory 1308 is shown for the
client 1302, a wide variety of types and combinations of
memory may be employed, such as random access memory
(RAM), virtual memory, solid state memory, removable
medium memory, rotating media memory, and other types of
computer-readable media. Card reader 1310 is accessible to
client 1302 and comprises processor 1312 specifically con-
figured and operable to execute computer-executable
instructions associated with application 1314. Reader 1316
can by physically integrated into card reader 1310 or sepa-
rately attached. Client 1302 is shown able to communicate
through network 1318 to RESTful service 1320.

RESTH(ul service 1320 is comprised of server 1322, which
can be multiple servers, part of a server farm, virtual servers,
or cloud services. Server 1322 is depicted as having pro-
cessor 1324 and available memory 1326 operable to execute
computer-executable instructions associated with applica-
tion 1328. Multiple processors can be used. Although a
single memory 1326 is shown for server 1302, a wide
variety of types and combinations of memory may be
employed, such as random access memory (RAM), virtual
memory, solid state memory, removable medium memory,
rotating media memory, and other types of computer-read-
able media. Application 1328 is depicted as having authen-
tication filter 1330 and authorization filter 1332. PEP 1334
is a software component integrated into, or called from,
authorization filter 1332.

Authentication Services 1336 is depicted as a collection
of servers configured to provide specific capabilities.
Although each capability is shown on a separate server, two
servers or one server could be used. Alternatively, multiple
servers could be used for one or more of the capabilities
comprising the authentication services. One or more servers
may be under the control or ownership of one or more
different organizations, examples include: credit bureaus,
insurance agencies, healthcare providers, state or national
government agencies, political organizations, commercial
organizations, etc.

Server 1338 comprises processor 1340, which could be
implemented with multiple processors. Processor 1340 and
available memory 1344 are specifically configured and
operable to execute computer-executable instructions asso-
ciated with relying party application 1342. As part of the
execution of relying party application 1342, ST and TGT

US 9,485,248 B2

25

ticket information 1346 and SAML certificates 1348 can be
supported by memory 1344. Although a single memory
1344 is shown for the server 1338, a wide variety of types
and combinations of memory may be employed, such as
random access memory (RAM), virtual memory, solid state
memory, removable medium memory, rotating media
memory, and other types of computer-readable media. This
is also true for memory 1356 and memory 1374, discussed
below. Server 1350 comprises processor 1352, which could
be implemented with multiple processors. Processor 1352
and available memory 1356 are specifically configured and
operable to execute computer-executable instructions asso-
ciated with OpenlD provider application 1354. As part of the
execution of OpenlD provider application 1354, ST and
TGT ticket information 1358 and SAML certificates 1360
can be supported by memory 1356.

Both server 1350 and server 1338 are able to communi-
cate to network 1318, allowing communication with client
1302. Server 1338 can use network 1318 to communicate to
authentication filter 1330. Server 1362 can use network
1318 but that is not required as long as server 1362 can
communicate to both server 1350 and data stores. FIG. 13
depicts multiple data stores indicated by the ellipsis con-
necting data store A 1376 and data store Z 1378, however
multiple data stores are not required. Data stores are not
required to be in the same physical space as each other or
server 1362. Data stores may be under the control or
ownership of one or more different organizations, examples
include: credit bureaus, insurance agencies, healthcare pro-
viders, state or national government agencies, political orga-
nizations, commercial organizations, etc. However data
stores must be able to communicate with server 1362.

Server 1362 comprises processor 1364, which could be
implemented with multiple processors. Processor 1364 and
available memory 1374 are specifically configured and
operable to execute computer-executable instructions asso-
ciated with HTML interface 1366, SAR application 1368,
PEP 1370, and PDP 1372 PEP 1370 is a software component
integrated into, or called from, SAR application 1368. PEP
1370 communicates with PDP 1372, which can be embed-
ded on the same server (as shown) or on another server (as
depicted, for example, in PDP 1382 on server 1380 used by
PEP 1334).

Server 1380 comprises processor 1382, which could be
implemented with multiple processors. Processor 1382 and
available memory 1386 are specifically configured and
operable to execute computer-executable instructions asso-

10

15

20

25

30

35

40

26

ciated PDP 1384. As depicted, server 1380 communicates to
server 1322 through network 1318. However, PDP 1384
could instead be on server 1322 (similar to PEP 1370, and
PDP 1372 on server 1362).

As described above, in a different implementation SAR
application 1368 would not be used and data sources
depicted as exemplary data stores A 1376 and Z 1378 would
be accessed from server 1350. Other implementations are
possible.

One or more credentials sent over a back channel during
the authentication of a user to a RESTful service can elevate
the trust the recipient system can place in the user’s identity.
The addition of an identity credential of higher strength can
increase confidence in user identities electronically pre-
sented with a lower strength credential. Credential strength
requirements for access to sensitive information from vari-
ous entity environments are described in DoD Instruction
(DoDI) 8520.03. The DoDI 8520.03 figure entitled “Mini-
mum Credential Strengths for Authentication to Information
Systems” is reproduced herein as Table 5.

Credential strength is a characteristic of an identity cre-
dential that indicates the resistance of the identity credential
to forgery or fraudulent use, taking into account the strength
of' the identity credential technology, the rigor of the identity
proofing performed prior to issuance of the identity creden-
tial, and the protections incorporated into the process for
issuing and managing the identity credential’s life cycle.
(DoDI 8520.03, p. 14) As shown in Table 5, credential
strength required to access information at different sensitiv-
ity levels varies with regard to the environment from which
the entity authenticates, i.e. the entity environment. Identity
credentials comprise hardware or software tokens that
include identity information asserted by the credential
issuer. Examples of identity credentials include SAML
tokens, JSON Web Tokens (JWT) and other software or
hardware tokens.

The strength of credentials may be determined under the
guidelines of the Identity, Credential, & Access Manage-
ment (ICAM) program. Certified credential issuers are
approved under the ICAM procedures and are periodically
audited to ensure compliance. As an example, OpenlD
credentials have been certified for e-authentication level of
assurance 2, which is equivalent to a DoDI 8520.03 creden-
tial strength of “A.” Similarly, SAML assertions have been
certified for use up to level of assurance 4. Additional
information on assurance levels is described in NIST Special
Publication 800-63-1 (SP 800-63).

TABLE 5

Minimum Credential Strengths for Authentication (DoDI 8520.03)

Entity Environment

Classified Classified

User Partner DoD DoD Partner DoD

Untrusted Managed Managed Managed Network Network Network

Classified 7
Classified 6
Classified 5
Admin
Accounts
Unclassified 4
Unclassified 3
Unclassified 2
Unclassified 1

H H

G G

F F

E E E H H
E E E
D C C B
D B B A
A A A A

Key

Letters indicate minimum credential strength to be used for each combination of the entity environment and sensitivity

level

US 9,485,248 B2

27

As shown in Table 5, a requester (which could be a person
or a non-person), using a computing asset owned and
managed by a DoD mission partner, can access information
at a sensitivity level 1 using an OpenlD credential (returned
with the ST) having a credential strength of “A.” A security
policy based on DoDI 8520.03 will allow the requester
access to, for example, the individual’s own medical record.
However, access to the medical records of multiple indi-
viduals is information with a sensitivity level of 3, so access
to that information requires use of credential strength of “C.”
A properly prepared SAML assertion containing identity
attributes sent over the back channel during authentication
can have the credential strength of “C.” Therefore, use of the
SAML credential passed during the back channel validation
can be used to raise the overall credential strength to “C,”
allowing access to information not previously available
using just the OpenlD credential.

FIG. 14 shows an example representation illustrating
increased access to information of varied sensitivity levels
using the approach discussed above. Area 1402 encloses the
information available to the user authenticated with a front
channel credential only. Area 1404 encloses information of
additional sensitivity levels made available by combining
the front channel credential presented to the RESTful ser-
vice with the back channel credential. Applying our
example, a user authenticated with an OpenlD with creden-
tial strength “A” (returned with the ST) will be permitted by
a security policy based on DoDI 8520.03 to request access
to information 1410 at sensitivity level 1. A user authenti-
cated with a front channel OpenlD credential presented to
the RESTful service combined with a SAML back channel
credential will be permitted to request access to information
having sensitivity levels of 1 (1410), 2 (1408), and 3 (1406).

An additional example of the effect of elevating trust in
user identity during RESTful authentication is described
below. A user is in an unclassified entity environment using
a computing asset that is owned or operated on behalf of the
DoD, but not physically connected to a DoD network (“DoD
Managed,” in Table 5). The user authenticates by electroni-
cally presenting a front channel OpenlD credential to a
RESTHul service. The OpenlD credential is in compliance
with the technical requirements for e-authentication assur-
ance level 2 as described in SP 800-63 and is determined to
have a DoDI 8520.03 credential strength “A.” At that
credential strength, an individual is authorized under DoDI
8520.03 to request access to their DoD training record,
which is information classified as sensitivity level 1. Users
authenticated only with a credential strength of “A” are not
authorized under DoDI 8520.03 to request access to DoD
personnel management systems, which is information clas-
sified as sensitivity level 3. In this example, the authenti-
cated user requests access to a DoD personnel management
system. The user is prompted for additional authentication
information, for example correct answers to questions only
the user would have knowledge of such as high school
attended, favorite model of car, favorite book, etc. Electronic
presentation of the OpenlID credential and knowledge-based
answers provide multi-factor remote network authentication
allowing use of the NIST assurance level 3-compliant
SAML assertion that was returned during the validation of
the OpenlD credential. In this example, the SAML creden-
tial is determined to have a credential of strength “C.”
Assuming the user has suitable privilege, the request for
access to a DoD personnel management system is allowed.
In this scenario, the user might then perform a DoD per-
sonnel management system function, for example reviewing
the training records of other individuals.

15

30

35

40

45

50

55

60

65

28

Compliance with DoDI 8520.03 and SP 800-63, as
described in the examples above, are not required for
elevating trust in user identities during RESTful authenti-
cation. Reference to DoDI 8520.03 and SP 800-63 provide
a framework in which to demonstrate authentication assur-
ance principles. The concepts herein can be used in many
applications and does not depend on the use of any specific
credential or token.

What is claimed is:

1. A computer-implemented method of authenticating and
authorizing an entity, comprising:

receiving, by a RESTful service, a request from an entity,

wherein the request is for access to a protected
resource;
redirecting the entity to a relying party, wherein the
relying party facilitates the authentication of the entity
and stores a first credential and a SAML credential;

receiving, by the RESTful service, the first credential
from the relying party, wherein the first credential is
received through a front channel;

receiving, by the RESTful service, the SAML credential

from the relying party, wherein the SAML credential is
received through a back channel;
authenticating the entity at a level of confidence based on
the credential strength of the first credential and based
on the credential strength of the SAML credential; and

authorizing the entity’s access to the protected resource,
wherein the authorization is based on attributes con-
tained in the SAML credential.

2. The method of claim 1, wherein the relying party
facilitates the authentication of the entity using an OpenlD
identity provider.

3. The method of claim 1, wherein the SAML credential
has a credential strength of DoDI 8520.03 level C.

4. The method of claim 1, wherein the SAML credential
has an SP 800-63 level of assurance 3.

5. The method of claim 1, wherein the SAML credential
has an SP 800-63 level of assurance 4.

6. The method of claim 1, wherein the SAML credential
passed by the relying party contains X.509 attributes.

7. The method of claim 1, wherein information passed on
the back channel is encrypted using SSL protocol.

8. The method of claim 1, wherein information passed on
the back channel is encrypted using TLS protocol.

9. The method of claim 1, wherein information passed on
the back channel is exchanged using SOAP protocol.

10. The method of claim 1, wherein the first credential is
a CAS credential.

11. A computer-implemented system, comprising:

a computer having a processor and a memory, and

a RESTful service operable to:

receive, from an entity via an entity agent, a request to

access a protected resource,

redirect the entity agent to a relying party,

receive a first credential related to the request, wherein the

first credential is received from the relying party and
through a front channel,

receive a SAML credential related to the request, wherein

the SAML credential is received from the relying party
and through a back channel,
authenticate the entity at a level of confidence based on
the credential strength of the first credential and based
on the credential strength of the SAML credential, and

authorize the entity’s access to the protected resource,
wherein the authorization is based on attributes con-
tained in the SAML credential;

US 9,485,248 B2

29

a relying party operable to:
facilitate the authentication of the entity,
store the first credential and the SAML credential,
send, through the front channel, the first credential to
the RESTHul service, and
send, through the back channel, the SAML credential to
the RESTHul service.

12. The method of claim 11, wherein the relying party is
further operable to facilitate authentication by using an
OpenlD profile.

13. The method of claim 11, wherein the SAML assertion
has the credential strength of DoDI 8520.03 level C.

14. The method of claim 11, wherein the SAML assertion
has an SP 800-63 level of assurance 3.

15. The method of claim 11, wherein the SAML assertion
has an SP 800-63 level of assurance 4.

16. The method of claim 11, wherein the SAML assertion
contains X.509 attributes.

17. The method of claim 11, wherein the relying party is
further operable to encrypt the back channel using SSL
protocol.

18. The method of claim 11, wherein the relying party is
further operable to encrypt the back channel using TLS
protocol.

19. The method of claim 11, wherein the relying party is
further operable to use SOAP protocol on the back channel.

10

15

20

25

30

20. A computer-implemented system, comprising:

a computer having a processor and a memory and oper-
able to:

receive, from an entity via an entity agent, a request to
access a protected resource,

redirect the entity agent to a relying party,

receive a first credential related to the request, wherein the
first credential is received from the relying party and
through a front channel,

receive a SAML credential related to the request, wherein
the SAML credential is received from the relying party
and through a back channel,

authenticate the entity at a level of confidence based on
the credential strength of the first credential and based
on the credential strength of the SAML credential, and

authorize the entity’s access to the protected resource,
wherein the authorization is based on attributes con-
tained in the SAML credential;

a relying party operable to:
facilitate the authentication of the entity,
store the first credential and the SAML credential,
send, through the front channel, the first credential to

the RESTHul service, and
send, through the back channel, the SAML credential to
the RESTful service.

#* #* #* #* #*

